股票信息處理分析系統(tǒng)研究與實現(xiàn)
本文選題:股票 + 時間序列; 參考:《浙江工業(yè)大學(xué)》2012年碩士論文
【摘要】:股票的股價序列是一個典型的時間序列,利用時間序列技術(shù)對股價序列進行研究分析有一定的理論意義和實用價值。通過研究時間序列相關(guān)理論和方法,將其應(yīng)用于股價序列,可發(fā)現(xiàn)股價時間序列的內(nèi)在變化規(guī)律,從而對其進行趨勢預(yù)測分析。研究利用股價時間序列建模技術(shù),并為投資者提供一個能自動化、智能化分析股市信息的工具,是本文的研究目標(biāo)。本文的主要研究內(nèi)容包含了以下幾個方面: (1)設(shè)計和實現(xiàn)了一個股票信息處理分析系統(tǒng),能實現(xiàn)用戶管理、技術(shù)分析、條件選股等常規(guī)股票分析功能。 (2)提出了一種改進的適用于股票股價序列的擬合算法,,該算法的思想是采用斜率法和三角中線法相結(jié)合的辦法來尋找股票的股價關(guān)鍵趨勢點作為分段點,進而對序列進行分段線性擬合,最后在行情處理系統(tǒng)中對算法進行實現(xiàn)。在實證研究中,通過與幾種常見擬合算法的比較發(fā)現(xiàn),該改進的算法在數(shù)據(jù)壓縮和對股票趨勢的提取這兩個方面具有更好的效果;最后將此改進的算法融入到股票信息處理分析系統(tǒng)中,具有操作方便,能迅速獲取股票關(guān)鍵信息等優(yōu)點。 (3)針對如何選擇輸入特征向量能使支持向量機的預(yù)測效果更加精準(zhǔn)這一問題,本文提出了兩種改進的算法:一是運用關(guān)鍵點查找算法來對原始的股票信息進行特征選擇,選擇股價序列中能代表股票整體走勢的序列作為SVM的輸入特征向量;二是通過決策樹的信息增益法來判定股票輸入特征的重要程度,再根據(jù)信息增益值來對特征進行加權(quán)計算后作為SVM的輸入特征向量;最后將此兩種改進的算法融入到股票信息處理分析系統(tǒng)中,能在很大程度上提高了預(yù)測結(jié)果的精度。 總之,本文在實現(xiàn)了股票分析的基本功能之上,又結(jié)合上述研究的時間序列算法,側(cè)重實現(xiàn)了對于股價序列的基于關(guān)鍵點的SVM預(yù)測功能和基于決策樹加權(quán)特征選擇的SVM預(yù)測功能,使得系統(tǒng)具有其他股票分析系統(tǒng)所沒有的功能。
[Abstract]:The stock price sequence is a typical time series. It has some theoretical and practical value to study the stock price sequence by using time series technology. By studying the theory and method of time series related to the stock price sequence, we can find the internal change law of the time sequence of the stock price, so as to carry on the trend of the trend. The research aim of this paper is to use the time series modeling technology of stock price and provide an automatic and intelligent tool for investors to analyze the stock market information. The main research contents of this paper include the following aspects:
(1) designed and implemented a stock information processing and analysis system, which can realize user stock management, technical analysis, conditional stock selection and other conventional stock analysis functions.
(2) an improved fitting algorithm suitable for stock stock price sequence is proposed. The idea of this algorithm is to use the method of slope and triangular midline to find the key point of stock price as a piecewise point, and then piecewise linear fitting to the sequence. Finally, the algorithm is realized in the market processing system. In the study, by comparing with several common fitting algorithms, it is found that the improved algorithm has two advantages in data compression and the extraction of stock trend. Finally, the improved algorithm is integrated into the stock information processing and analysis system, which has the advantages of convenient operation and quick acquisition of the key information of stock.
(3) in order to select the input feature vector to make the support vector machine more accurate, this paper proposes two improved algorithms: first, using the key point search algorithm to select the original stock information, choose the sequence of the overall trend of the stock in the stock price sequence as the input feature of the SVM The two is to determine the importance of the input characteristics of the stock by the information gain method of the decision tree, and then weigh the features according to the gain value of the information as the input feature vector of the SVM. Finally, the two improved algorithms are integrated into the stock information processing and analysis system, and the prediction results can be greatly improved. Precision.
In conclusion, this paper has realized the basic function of stock analysis, and combined with the time series algorithm of the above research, it lays particular emphasis on realizing the SVM forecasting function based on the key point of the stock price sequence and the SVM prediction function based on the decision tree weighted feature selection, which makes the system have its function that his stock analysis system has not.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP311.52;F830.91
【參考文獻】
相關(guān)期刊論文 前9條
1 周萬隆;姚艷;;支持向量機在股票價格短期預(yù)測中的應(yīng)用[J];商業(yè)研究;2006年06期
2 戴元紅;陳鴻昶;胡海龍;;一種基于屬性加權(quán)的代價敏感支持向量機算法[J];電子技術(shù)應(yīng)用;2009年06期
3 閆秋艷;夏士雄;;一種無限長時間序列的分段線性擬合算法[J];電子學(xué)報;2010年02期
4 陸薛妹;胡軼;方建安;;基于分段極值DTW距離的時間序列相似性度量[J];微計算機信息;2007年27期
5 馮少榮;;決策樹算法的研究與改進[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2007年04期
6 郭輝;劉賀平;王玲;;最小二乘支持向量機參數(shù)選擇方法及其應(yīng)用研究[J];系統(tǒng)仿真學(xué)報;2006年07期
7 王行建;劉欣;;ARMA時間序列模型的研究與應(yīng)用[J];自動化技術(shù)與應(yīng)用;2008年08期
8 杜樹新,吳鐵軍;回歸型加權(quán)支持向量機方法及其應(yīng)用[J];浙江大學(xué)學(xué)報(工學(xué)版);2004年03期
9 杜奕;盧德唐;李道倫;趙亦朋;;一種快速的時間序列線性擬合算法[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2007年03期
相關(guān)碩士學(xué)位論文 前6條
1 張擁華;基于支持向量機的金融時間序列研究[D];湖南大學(xué);2008年
2 安瀟瀟;ARMA相關(guān)模型及其應(yīng)用[D];燕山大學(xué);2008年
3 杜梓平;財務(wù)信息管理系統(tǒng)的設(shè)計與實現(xiàn)[D];北京郵電大學(xué);2009年
4 胡瑩;基于支持向量機的證券投資風(fēng)險管理研究[D];西安電子科技大學(xué);2010年
5 鄭宏宇;關(guān)于支持向量機方法的探討[D];西北大學(xué);2010年
6 王振朋;基于支持向量回歸機的盲均衡算法的研究[D];太原理工大學(xué);2010年
本文編號:1820077
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/1820077.html