基于分位數(shù)回歸的存貨質(zhì)押融資市場風(fēng)險(xiǎn)度量研究
本文選題:存貨質(zhì)押融資 + 市場風(fēng)險(xiǎn)。 參考:《安徽財(cái)經(jīng)大學(xué)》2012年碩士論文
【摘要】:近些年來,物流與供應(yīng)鏈金融創(chuàng)新活動(dòng)在我國的物流業(yè)界和金融界都得到了一定的發(fā)展,它是一種關(guān)于銀行、物流企業(yè)和企業(yè)之間的業(yè)務(wù)整合的創(chuàng)新模式,它已經(jīng)是生產(chǎn)流通中的一個(gè)潛力非常大的新的經(jīng)濟(jì)增長點(diǎn)。而存貨質(zhì)押融資業(yè)務(wù)是這種創(chuàng)新模式的最核心的形式,所以本文研究的就是存貨質(zhì)押融資模式的市場風(fēng)險(xiǎn)。 本文先闡述了存貨質(zhì)押融資的概念、運(yùn)作模式和面臨的風(fēng)險(xiǎn),并且對質(zhì)押物樣本的對數(shù)收益率進(jìn)行了統(tǒng)計(jì)描述和特征研究,結(jié)果發(fā)現(xiàn)數(shù)據(jù)有波動(dòng)成群的特征,而且不服從正態(tài)分布和具有平穩(wěn)性的特征,這些為后面的風(fēng)險(xiǎn)度量在度量方法的選擇上提供了重要依據(jù)。在研究了存貨質(zhì)押融資的市場風(fēng)險(xiǎn)之后,進(jìn)一步對市場風(fēng)險(xiǎn)進(jìn)行了定量研究。VaR方法是目前金融市場風(fēng)險(xiǎn)的測量中運(yùn)用最普遍的方法,VaR是指在一定置信水平下,在正常市場情況下,所持有資產(chǎn)或者組合在未來特定持有期內(nèi)的最大損失值。這種方法簡單且僅使用一個(gè)特定的數(shù)字來表示未來的風(fēng)險(xiǎn)值,因此便于管理當(dāng)局分析和研究,但由于實(shí)際金融市場的復(fù)雜性,以及近幾年來頻發(fā)的國際性金融危機(jī),單純的VaR方法已經(jīng)不能充分并準(zhǔn)確地度量市場風(fēng)險(xiǎn)了 因此在研究的方法上,本文采用分位數(shù)回歸來計(jì)算VaR值。由前面提到的VaR的定義,可以將VaR看成是金融收益分布的某一分位數(shù)。分位數(shù)回歸在進(jìn)行回歸分析的時(shí)候不需要對序列的分布做出某種特定的假設(shè);分位數(shù)回歸可以實(shí)現(xiàn)對于不同的分位點(diǎn)分別進(jìn)行回歸分析,為研究提供一個(gè)更為全面的數(shù)據(jù)分析,特別是對于數(shù)據(jù)中出現(xiàn)異常點(diǎn)的擬合方面,其作用更為重要。本文在詳細(xì)討論了分位數(shù)回歸的模型,并將其運(yùn)用到VaR值的計(jì)算當(dāng)中。在不同的置信水平和不同的分位點(diǎn)上,基于分位數(shù)回歸的VaR模型對市場風(fēng)險(xiǎn)進(jìn)行了度量,并得到分位數(shù)回歸的VaR模擬序列,從回歸的VaR模型可以明顯得出:市場的系統(tǒng)風(fēng)險(xiǎn)和非系統(tǒng)風(fēng)險(xiǎn)在分位數(shù)回歸的VaR模型中都得到了體現(xiàn)。
[Abstract]:In recent years, the innovation of logistics and supply chain finance has been developed in the logistics and financial circles of our country. It is an innovative mode of business integration among banks, logistics enterprises and enterprises.It has been a new economic growth point with great potential in production and circulation.Inventory pledge financing is the core of this innovative mode, so this paper studies the market risk of inventory pledge financing mode.In this paper, the concept, operation mode and risk of inventory pledge financing are introduced, and the logarithmic return rate of pledge sample is statistically described and studied. The results show that the data have the characteristic of fluctuating in groups.Moreover, we do not agree with normal distribution and stationary characteristics, which provide an important basis for the choice of measurement methods.After studying the market risk of inventory pledge financing, this paper makes further quantitative research on the market risk. VaR method is the most common method used in the measurement of financial market risk at present, which means that VaR is at a certain confidence level.Under normal market conditions, the maximum loss value of an asset or portfolio held in a specific future holding period.This method is simple and uses only one specific number to represent future risk values, thus facilitating management analysis and research, but due to the complexity of actual financial markets and the frequency of international financial crises in recent years,The simple VaR method is no longer sufficient and accurate to measure market riskTherefore, in this paper, the quantile regression is used to calculate the VaR value.By the definition of VaR mentioned above, VaR can be regarded as a sub-digit of the distribution of financial returns.The quantile regression does not need to make a certain hypothesis about the distribution of the sequence, and the quantile regression can carry out the regression analysis for different loci, which provides a more comprehensive data analysis for the study.Especially for the abnormal points in the data fitting, its role is more important.In this paper, the quantile regression model is discussed in detail and applied to the calculation of VaR value.At different confidence levels and different loci, the market risk was measured by VaR model based on quantile regression, and the VaR simulation sequence of quantile regression was obtained.From the regression VaR model, it is obvious that the market system risk and non-system risk are reflected in the quantile regression VaR model.
【學(xué)位授予單位】:安徽財(cái)經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:F830.91;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊晏忠;;論商業(yè)銀行供應(yīng)鏈金融的風(fēng)險(xiǎn)防范[J];金融論壇;2007年10期
2 劉長宏;王春暉;吳迪;;關(guān)于創(chuàng)建中小企業(yè)“1+N”授信模式的研究[J];金融論壇;2008年02期
3 李齊;;金融危機(jī)下我國供應(yīng)鏈融資的未來走向[J];中國儲(chǔ)運(yùn);2009年05期
4 吳建強(qiáng);;我國推進(jìn)供應(yīng)鏈金融業(yè)務(wù)的思考[J];當(dāng)代經(jīng)濟(jì);2009年19期
5 陳寶峰;馮耕中;李毅學(xué);;存貨質(zhì)押融資業(yè)務(wù)的價(jià)值風(fēng)險(xiǎn)度量[J];系統(tǒng)工程;2007年10期
6 郭振林;市場票據(jù)金融創(chuàng)新──倉單[J];海南金融;1997年06期
7 尹海丹;;基于供應(yīng)鏈金融各模式下的銀行風(fēng)險(xiǎn)防范[J];經(jīng)濟(jì)師;2009年05期
8 李毅學(xué);徐渝;馮耕中;;國內(nèi)外存貨質(zhì)押融資業(yè)務(wù)演化過程研究[J];經(jīng)濟(jì)與管理研究;2007年03期
9 伊志宏;宋華;于亢亢;;商業(yè)銀行金融供應(yīng)鏈創(chuàng)新與風(fēng)險(xiǎn)控制研究——以中信銀行的金融創(chuàng)新服務(wù)為例[J];經(jīng)濟(jì)與管理研究;2008年07期
10 孫鳳英;;應(yīng)收賬款質(zhì)押貸款 企業(yè)融資的新渠道[J];經(jīng)濟(jì)縱橫;2007年10期
,本文編號:1757861
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/1757861.html