天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

按報文長度映射優(yōu)先級對DCNs中HOMA傳輸協(xié)議性能的影響

發(fā)布時間:2022-02-20 17:13
  本研究工作提出了一種強大、高效并且可靠的Homa傳輸協(xié)議修改方案。我們引入了一種新穎、直接并且高效的按報文大小確定優(yōu)先級的算法。首先,根據(jù)傳入流量,更改未進行優(yōu)先級調(diào)度的截止報文的大小范圍。我們使用顯式機制確定截止范圍,并根據(jù)負載報文大小確定優(yōu)先級。其次,我們選擇了最佳比例來分配優(yōu)先級,并據(jù)此更改已調(diào)度和未調(diào)度數(shù)據(jù)包的優(yōu)先級數(shù)。關(guān)于Homa傳輸協(xié)議的修改方案是直接的,并不復雜,并且可以被認為是根據(jù)報文大小確定優(yōu)先級算法的一種良好的替代方案。此外,所提出的確定優(yōu)先級算法的核心思想是根據(jù)先前負載報文大小的統(tǒng)計信息顯示地分配優(yōu)先級。除了方案中修改的地方,我們的工作基于與之前Homa工作完全相同的機制。因此,我們的研究工作令人非常滿意,而且性能相對較高。此外,我們的研究工作引入了充分的調(diào)研,了解報文大小映射優(yōu)先級對DCN中Homa傳輸協(xié)議性能的影響。仿真結(jié)果表明,我們提出的方法提高了 Homa在高網(wǎng)絡(luò)負載情況下的性能,并且令人滿意。在90%的網(wǎng)絡(luò)負載下,它將短報文的傳輸延遲降低到了14μs左右,并最大限度地減少了接收端下行鏈路側(cè)(TOR和接收端之間)的隊列長度-與Homa傳輸協(xié)議相比減少了 4... 

【文章來源】:北京郵電大學北京市211工程院校教育部直屬院校

【文章頁數(shù)】:80 頁

【學位級別】:碩士

【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
Chapter 1 Introduction
    1.1 Background
    1.2 Data Centers Goals
    1.3 Data Center Infrastructure
    1.4 Types of Data Center Networks
        1.4.1 Three-tier
        1.4.2 Fat tree
        1.4.3 DCell
        1.4.4 Others
    1.5 Transport in Data Center Networks
    1.6 Performance in Data Center Networks (DCNs)
    1.7 Challenge and Motivations
Chapter 2 Related Works and Key Technologies
    2.1 Literature Review
        2.1.1 Data Center TCP (DCTCP)
            2.1.1.1 Goal
            2.1.1.2 Algorithm
            2.1.1.3 Benefits
            2.1.1.4 Results
        2.1.2 High-bandwidth Ultra-Low Latency (HULL)
            2.1.2.1 Goal
            2.1.2.2 Challenges and Design
            2.1.2.3 HULL Architecture
            2.1.2.4 Results
        2.1.3 Deadline-Aware Datacenter TCP (D~2TCP)
            2.1.3.1 Goal
            2.1.3.2 Design
            2.1.3.3 Benefits
            2.1.3.4 Results
        2.1.4 Novel datacenter transport (NDP)
            2.1.4.1 Goal
            2.1.4.2 Design
            2.1.4.3 Benefits
            2.1.4.4 Results
        2.1.5 Information-Agnostic Flow Scheduling (PIAS)
            2.1.5.1 Goal
            2.1.5.2 Design
            2.1.5.3 Benefits
            2.1.5.4 Results
        2.1.6 Distributed Near-Optimal Datacenter Transport (pHost)
            2.1.6.1 Goal
            2.1.6.2 Design
            2.1.6.3 Benefits
            2.1.6.4 Results
        2.1.7 Minimal Near-Optimal Datacenter Transport (pFabric)
            2.1.7.1 Goal
            2.1.7.2 Design
            2.1.7.3 Benefits
            2.1.7.4 Results
        2.1.8 Homa Transport Protocol
            2.1.8.1 Goal
            2.1.8.2 Design
            2.1.8.3 Benefits
            2.1.8.4 Results
    2.2 Software Programs and Tools Used in research work
        2.2.1 Linux Operating System
        2.2.2 Virtual Machine VMware Workstation
        2.2.3 OMNeT++4.6
        2.2.4 Python Programming Language
        2.2.5 OriginPro Software Program
Chapter 3 Homa Transport Protocol
    3.1 Introduction
    3.2 Motivations of Homa
    3.3 Objectives of Homa
    3.4 Key Ideas and Contributions
    3.5 Network Assumptions with Homa
    3.6 Using workloads with Homa
    3.7 The Design Space
        3.7.1 No time to schedule each packet
        3.7.2 Buffering is a necessary case
        3.7.3 In-network priorities are a must
        3.7.4 Limited priorities require receiver control to make best use
        3.7.5 Receivers should assign priorities dynamically
        3.7.6 Receivers should be able overcommitment their downlink controlling
        3.7.7 Senders also requires SRPT
        3.7.8 Collecting it all together
    3.8 Design of Homa
        3.8.1 RPCs, without connections
        3.8.2 Behavior of sender
        3.8.3 Flow control
        3.8.4 Priorities of Packet
        3.8.5 Overcommitment
        3.8.6 Incast
        3.8.7 Lost packets
    3.9 Implementation
    3.10 Evaluation
        3.10.1 Implementation Measurements
            3.10.1.1 Homa vs. Infiniband
            3.10.1.2 Homa vs.TCP
            3.10.1.3 Homa vs. other implementations
            3.10.1.4 Incast
        3.10.2 Simulations
            3.10.2.1 Tail latency vs. pFabric, pHost, and PIAS
            3.10.2.2 NDP
            3.10.2.3 Causes of remaining delay
            3.10.2.4 Bandwidth utilization
            3.10.2.5 Lengths of queues
            3.10.2.6 Priority utilization
    3.11 Conclusion
Chapter 4 Proposed Homa Transport Protocol Modifications
    4.1 Introduction
    4.2 Change cutoff message size for unscheduled priority levels
    4.3 Change the number of priority levels for scheduled and unscheduled
    4.4 Using workloads with proposed Homa
    4.5 Design Space
    4.6 Advantages of our work
    4.7 Disadvantages of our work
Chapter 5 Experimental Results
    5.1 Introduction
    5.2 Topology and Configuration
        5.2.1 Simulation global configuration options
        5.2.2 Data center network topology
        5.2.3 Our Homa transport parameters
        5.2.4 Workload types
    5.3 End to end messages tail latency
        5.3.1 With load factor 10% and 6 unscheduled priority levels
        5.3.2 With load factor 90% and 6 unscheduled priority levels
        5.3.3 With load factor 90% and 5 unscheduled priority levels
    5.4 Average and maximum lengths of queue
        5.4.1 With load factor 10% and 6 unscheduled priority levels
        5.4.2 With load factor 90% and 6 unscheduled priority levels
        5.4.3 With load factor 90% and 5 unscheduled priority levels
    5.5 Bandwidth utilization
        5.5.1 With load factor 10% and 6 unscheduled priority levels
        5.5.2 With load factor 90% and 6 unscheduled priority levels
        5.5.3 With load factor 90% and 5 unscheduled priority levels
    5.6 Comparison results
Chapter 6 conclusion and future work
    6.1 Conclusion
    6.2 Future work
References



本文編號:3635488

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/3635488.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶26836***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com