比特流協(xié)議分類模型
發(fā)布時間:2019-07-04 19:36
【摘要】:針對比特流協(xié)議分類困難的問題,提出一種比特流協(xié)議分類模型,該模型只利用比特流的物理取值和統(tǒng)計特性,不考慮協(xié)議中各個部分的語法、語義等信息來進行協(xié)議的分類。將比特流協(xié)議進行進制轉(zhuǎn)換、數(shù)據(jù)單元切分、對數(shù)據(jù)單元進行詞頻統(tǒng)計,得到對應(yīng)比特流流協(xié)議的數(shù)據(jù)單元頻率統(tǒng)計圖;使用基于貝葉斯理論設(shè)計的機器學(xué)算法對其進行學(xué)習(xí),得到分類模型,將分類模型用于實際的協(xié)議分類;诹挚蠈嶒炇夜嫉臄(shù)據(jù)集測試結(jié)果表明,該模型能較好地對比特流協(xié)議進行分類,正確率高,運行穩(wěn)定、速度快。
[Abstract]:In order to solve the problem that it is difficult to classify bitstream protocol, a bitstream protocol classification model is proposed. The model only makes use of the physical value and statistical characteristics of bitstream, and does not consider the syntax, semantics and other information of each part of the protocol to classify the protocol. The bit flow protocol is converted, the data unit is segmented, and the word frequency statistics of the data unit are carried out, and the data unit frequency statistics diagram of the corresponding bit flow protocol is obtained. The machine algorithm based on Bayesian theory is used to learn it, and the classification model is obtained, and the classification model is applied to the actual protocol classification. The test results based on the dataset published by Lincoln Laboratory show that the model can be classified better than the special flow protocol, with high accuracy, stable operation and fast speed.
【作者單位】: 中國工程物理研究院計算機應(yīng)用研究所;電子科技大學(xué)計算機科學(xué)與工程學(xué)院;
【分類號】:TP393
本文編號:2510171
[Abstract]:In order to solve the problem that it is difficult to classify bitstream protocol, a bitstream protocol classification model is proposed. The model only makes use of the physical value and statistical characteristics of bitstream, and does not consider the syntax, semantics and other information of each part of the protocol to classify the protocol. The bit flow protocol is converted, the data unit is segmented, and the word frequency statistics of the data unit are carried out, and the data unit frequency statistics diagram of the corresponding bit flow protocol is obtained. The machine algorithm based on Bayesian theory is used to learn it, and the classification model is obtained, and the classification model is applied to the actual protocol classification. The test results based on the dataset published by Lincoln Laboratory show that the model can be classified better than the special flow protocol, with high accuracy, stable operation and fast speed.
【作者單位】: 中國工程物理研究院計算機應(yīng)用研究所;電子科技大學(xué)計算機科學(xué)與工程學(xué)院;
【分類號】:TP393
【相似文獻】
相關(guān)會議論文 前1條
1 劉敏;張煒;;一種基于FPGA的在線更新配置方案的研究與實現(xiàn)[A];2008年中國高校通信類院系學(xué)術(shù)研討會論文集(下冊)[C];2009年
相關(guān)碩士學(xué)位論文 前4條
1 劉剛;比特產(chǎn)品定價研究[D];復(fù)旦大學(xué);2014年
2 馬良;H.264比特流解析器的設(shè)計[D];華中科技大學(xué);2009年
3 張泱博;比特產(chǎn)品多維度分類研究[D];北京郵電大學(xué);2014年
4 王寧;基于“魚眼”降比特的視頻可分級編碼與傳輸控制研究[D];西南交通大學(xué);2006年
,本文編號:2510171
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2510171.html
最近更新
教材專著