天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

云環(huán)境下基于多目標(biāo)優(yōu)化算法的微博意見領(lǐng)袖挖掘

發(fā)布時間:2019-04-10 08:31
【摘要】:近幾年,隨著互聯(lián)網(wǎng)的普及,人們的交流方式也發(fā)生了翻天覆地的變化。微博作為一種新興的網(wǎng)絡(luò)信息傳播媒體受到廣大網(wǎng)民的追捧,它的時效性和裂變性可以使信息在很短的時間內(nèi)得到廣泛的傳播,因此對信息的有效控制就變得十分重要。因為,一旦有人蓄意傳播虛假信息或者危害社會安全的言論,后果將十分嚴(yán)重。那么,對在網(wǎng)絡(luò)信息傳播中占主導(dǎo)地位的意見領(lǐng)袖的挖掘和監(jiān)控就顯得意義重大。 目前對于意見領(lǐng)袖的挖掘方法主要有統(tǒng)計學(xué)方法、聚類分析法、基于SNA社會網(wǎng)絡(luò)分析法等,這些方法都有各自的特點,但是面對331億微博網(wǎng)民所產(chǎn)生的海量微博數(shù)據(jù),它們并沒有表現(xiàn)出很好的處理能力。 本文以微博用戶屬性為立足點,將其多個屬性特征與多目標(biāo)優(yōu)化問題結(jié)合起來,提出把Skyline查詢引入到微博意見領(lǐng)袖的挖掘中,Skyline查詢是解決多目標(biāo)優(yōu)化問題的一類方法。面對海量的微博數(shù)據(jù),本文引入Hadoop關(guān)鍵技術(shù)MapReduce框架,將Skyline計算中的BNL塊嵌套循環(huán)算法和SFS排序過濾算法在該編程框架下實現(xiàn),使其在處理海量數(shù)據(jù)時有更好的性能。接著對意見領(lǐng)袖評估模型進(jìn)行建立,提出從用戶影響力和用戶參與度兩個指標(biāo)評價微博意見領(lǐng)袖,并利用AHP層次分析法確定各屬性權(quán)重,最后給出意見領(lǐng)袖計算公式。在挖掘?qū)嶒炿A段,搭建Hadoop集群環(huán)境,設(shè)計微博爬蟲獲取微博數(shù)據(jù),將數(shù)據(jù)用并行化后的SFS算法進(jìn)行處理,再將處理結(jié)果運用于意見領(lǐng)袖模型中進(jìn)行計算。最后將本文挖掘的意見領(lǐng)袖與新浪微博官方人氣用戶進(jìn)行對比,結(jié)果顯示本文的方法挖掘出的意見領(lǐng)袖分布領(lǐng)域相對廣泛,在一定程度上避免了新浪微博官方用戶排名中娛樂人物一家獨大的現(xiàn)象。因此,本文的思路可以作為一種解決方法,處理海量、高維數(shù)據(jù),為微博意見領(lǐng)袖的挖掘提供了一種可能的選擇。
[Abstract]:In recent years, with the popularity of the Internet, people's way of communication has also undergone earth-shaking changes. As a new kind of network information communication media, Weibo has been pursued by many netizens, its timeliness and fragmentation can make information widely spread in a very short time, so the effective control of information becomes very important. As soon as someone deliberately spreads false information or endangers social security, the consequences will be very serious. So, it is of great significance to excavate and monitor the opinion leaders who play a dominant role in the network information dissemination. At present, there are statistical method, cluster analysis method and social network analysis method based on SNA for opinion leader mining. These methods have their own characteristics. However, in the face of the massive Weibo data generated by 33.1 billion Weibo netizens, They don't show good handling power. In this paper, taking Weibo user attribute as the foothold, combining its multi-attribute features with multi-objective optimization problem, this paper proposes to introduce Skyline query into the mining of Weibo opinion leader. Skyline query is a kind of method to solve multi-objective optimization problem. Facing the huge amount of Weibo data, this paper introduces MapReduce framework, the key technology of Skyline, and implements the BNL block nested loop algorithm and SFS sorting filtering algorithm in Skyline computing under this programming framework, so that it has better performance when dealing with massive data. Then the evaluation model of opinion leader is established, and two indexes of user influence and user participation are put forward to evaluate the opinion leader of Weibo. The weight of each attribute is determined by AHP, and the formula of opinion leader is given at last. In the mining experiment stage, the Hadoop cluster environment is built, the Weibo crawler is designed to obtain Weibo data, the data is processed by parallel SFS algorithm, and the processing results are applied to the opinion leader model for calculation. Finally, the author compares the opinion leaders excavated in this paper with the official popular users of Sina Weibo, and the results show that the opinion leaders are distributed in a relatively wide range of areas by the method of this paper. To some extent avoided Sina Weibo official user ranking entertainment figures in the big phenomenon. Therefore, the idea of this paper can be used as a solution to deal with massive, high-dimensional data, which provides a possible choice for the mining of Weibo opinion leaders.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP393.092

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李名亮;;現(xiàn)實與隱憂:微博意見領(lǐng)袖的話語權(quán)力[J];今傳媒;2012年05期

2 桑亮;許正林;;微博意見領(lǐng)袖的形成機(jī)制及其影響[J];當(dāng)代傳播;2011年03期

3 肖宇;許煒;夏霖;;一種基于情感傾向分析的網(wǎng)絡(luò)團(tuán)體意見領(lǐng)袖識別算法[J];計算機(jī)科學(xué);2012年02期

4 王玨;曾劍平;周葆華;吳承榮;;基于聚類分析的網(wǎng)絡(luò)論壇意見領(lǐng)袖發(fā)現(xiàn)方法[J];計算機(jī)工程;2011年05期

5 王甲生;吳曉平;廖巍;陳永強(qiáng);;改進(jìn)的加權(quán)復(fù)雜網(wǎng)絡(luò)節(jié)點重要度評估方法[J];計算機(jī)工程;2012年10期

6 肖宇;許煒;夏霖;;網(wǎng)絡(luò)社區(qū)中的意見領(lǐng)袖特征分析[J];計算機(jī)工程與科學(xué);2011年01期

7 馬寧;劉怡君;;基于超網(wǎng)絡(luò)的輿論領(lǐng)袖識別應(yīng)用研究[J];中國科學(xué)院院刊;2012年05期

8 張萌;余芬芬;;微博意見領(lǐng)袖對網(wǎng)絡(luò)輿論的影響[J];新聞世界;2012年07期

9 肖宇;許煒;張晨;何丹丹;;社交網(wǎng)絡(luò)中用戶區(qū)域影響力評估算法研究[J];微電子學(xué)與計算機(jī);2012年07期

10 王平;謝耘耕;;突發(fā)公共事件中微博意見領(lǐng)袖的實證研究——以“溫州動車事故”為例[J];現(xiàn)代傳播(中國傳媒大學(xué)學(xué)報);2012年03期



本文編號:2455648

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2455648.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d8dd8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com