網(wǎng)絡(luò)拓撲圖劃分算法研究
[Abstract]:Many Internet-based studies, as well as research on cognitive networks, involve the use of high-speed cluster computer systems to simulate or process large-scale networks in parallel. The division of network topology is an effective way to deal with the task assignment. Based on the application of graph division and the situation of extension, the network topology graph partitioning algorithm is deeply studied in order to guarantee the need of the division quality. The research work in this paper mainly includes four aspects: the solution mode of the network topology graph division, the partitioning algorithm of the network simulation graph, the graph partitioning algorithm of the CDN cache server placement problem and the evaluation method of the network topology graph division quality. The specific research contents are as follows: First, in order to standardize the solution process of the network topology graph division problem, the partition quality is guaranteed from the internal mechanism, and the solution mode of the network topology graph partition with the loop optimization adjustment link is explored and constructed. The model includes three parts: one is the pretreatment of the graph, namely the weight estimation, the constraint condition and the determination of the optimization target; the second is the division of the graph, including three stages of coarsening, compression, initial division and refinement; thirdly, the quality evaluation and the operation parameter circulation optimization adjustment are divided. At the same time, in order to meet the need of the continuous extension of the application field of the graph, on the basis of the general definition of the network topology graph, the concept of maximum edge cutting and the four extension definitions of the network topology diagram are given, and the traditional graph division is broken only to minimize edge cutting, It is not possible to maximize the binding of the edge cut. Secondly, according to the network topology graph partition solution mode, a network simulation graph multi-layer k-way partitioning algorithm with a loop optimization adjusting link is proposed, and the purpose of ensuring the division quality is achieved. On the basis of the traditional algorithm, the preprocessing link is added, the weight estimation is carried out, and the optimization objective and the constraint condition are determined according to the task requirements and the actual data conditions. This paper describes the selection of the light-point matching algorithm in the coarsening stage, and solves the problem that the heavy-node is compressed in the original design of the light-point matching algorithm. The sensitivity of the original algorithm to the size of the edge cutting due to different initial points is solved. In this paper, the specific process of the optimization and adjustment of the running parameters is designed, and the specific selection and adjustment method of the cycle variable are given. By using the selected light-point matching algorithm and the comparison experiment of the network simulation graph with the light-point matching algorithm and the selected heavy-edge matching algorithm, the experimental data show that the selected light-point matching algorithm is better than the control algorithm in terms of the edge cutting and the balance degree, It is proved that the selected light-point matching algorithm is more suitable for the division of the network simulation graph than the control algorithm. Third, in order to solve the problem of CDN cache server placement, a new method for dividing the CDN image with the maximum edge cutting algorithm is proposed. The conditions and the definition of the CDN graph division are given, and the weight abstract rules of the CDN graph division are determined. In this paper, a single-edge compression algorithm and a selected light-point compression algorithm are used to divide the CDN image into coarsened compression, and the initial division is carried out by a single-edge compression k-way division method and the KL/ FM algorithm is modified to realize the refinement and reduction of the CDN graph division. The experimental data of the CDN graph prove that the selected light-point compression algorithm and the single-edge compression algorithm are an effective way to solve the problem of the CDN graph division. Fourth, in order to compare the division performance of the different partitioning algorithm and the effect of the verification graph, a comprehensive evaluation index method of network topology is proposed. The basic evaluation parameters of network topology graph division are defined, and the basic method of network topology graph division quality evaluation is constructed, including the concept of the division of the balance product Q, the division quality of the network simulation graph and the dimensionless evaluation index C. The comprehensive evaluation index method of network simulation graph division quality and the time index method to complete the task are designed. The paper gives an example of the comprehensive evaluation of the division quality of the network simulation graph by the J value method and the C value method, and the experimental data analysis shows that the evaluation result reflects the comprehensive effect of the joint evaluation of the division quality with different evaluation indexes, and the comprehensive evaluation method has both theoretical and practical application values. The evaluation index of the division quality of the CDN (CDN) graph is developed, including the concept of the relative evaluation index (L), such as the scale quotient (R) and the CDN (CDN) graph. In this paper, an example of an L value method for the quality of the CDN graph division is given, and the experimental data of the selected light point compression algorithm, the single light edge compression algorithm and the light edge matching algorithm are compared and analyzed to prove that the selected light point compression algorithm and the single-edge compression algorithm have the advantages of good effect and good effect.
【學位授予單位】:哈爾濱工程大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TP393.02
【相似文獻】
相關(guān)期刊論文 前10條
1 梁英,王琰;啟發(fā)式的網(wǎng)絡(luò)拓撲圖生成算法的構(gòu)造及實現(xiàn)[J];沈陽工業(yè)學院學報;2002年01期
2 高儒振,白英彩,孫德文;網(wǎng)絡(luò)拓撲圖的搜索實現(xiàn)[J];上海微型計算機;1997年08期
3 孟月萍;計算機網(wǎng)絡(luò)拓撲圖構(gòu)造技術(shù)[J];計算機應(yīng)用;1998年09期
4 孟月萍,譚燕秋;計算機網(wǎng)絡(luò)拓撲圖構(gòu)造技術(shù)[J];河北建筑科技學院學報;1998年01期
5 程遠,嚴偉,李曉明;基于斥力-張力模型的網(wǎng)絡(luò)拓撲圖布局算法[J];計算機工程;2004年03期
6 呂亮;盧澤新;酈蘇丹;李淵;;基于擴展力學模型的網(wǎng)絡(luò)拓撲圖布局算法[J];計算機應(yīng)用研究;2010年07期
7 何鵬;陸建新;施Oz;陳繼紅;;一種園區(qū)級網(wǎng)絡(luò)拓撲圖布局算法[J];微計算機信息;2007年09期
8 周安宇;張宏莉;胡銘曾;SYU Anhei;宋丕尤;;網(wǎng)絡(luò)拓撲圖多層k劃分輕點匹配模式研究[J];佳木斯大學學報(自然科學版);2006年02期
9 何慧;胡銘曾;張宏莉;裴曉峰;楊志;;網(wǎng)絡(luò)拓撲圖多級分割塌縮階段算法改進[J];華中科技大學學報(自然科學版);2005年S1期
10 陳志翔;;基于復(fù)雜網(wǎng)絡(luò)的社團結(jié)構(gòu)分析——以四川大學藍色星空為例[J];技術(shù)與市場;2009年12期
相關(guān)會議論文 前7條
1 姜棟;鄭康鋒;胡影;;基于蟻群的啟發(fā)式網(wǎng)絡(luò)拓撲圖布局算法[A];第九屆中國通信學會學術(shù)年會論文集[C];2012年
2 劉祥濤;龔才春;曾依靈;白碩;鮑旭華;;Kad網(wǎng)絡(luò)節(jié)點共享資源探測分析[A];第五屆全國信息檢索學術(shù)會議論文集[C];2009年
3 付瑞梅;;基于Client/Server模式的應(yīng)用[A];內(nèi)蒙古通信學會2004年郵政年會論文集[C];2004年
4 王玲娜;李興明;;基于最小支撐樹的通用區(qū)域劃分算法[A];2008年中國西部青年通信學術(shù)會議論文集[C];2008年
5 徐丹丹;章勇;;一種基于節(jié)點度更新的簇劃分算法[A];2008通信理論與技術(shù)新發(fā)展——第十三屆全國青年通信學術(shù)會議論文集(下)[C];2008年
6 劉培強;謝青松;朱大銘;;用于基因表達譜數(shù)據(jù)聚類分析的貪心圖劃分算法研究[A];2006年全國理論計算機科學學術(shù)年會論文集[C];2006年
7 劉華偉;全慶一;;能量有效的基于連通度的分布式簇劃分算法[A];2011年全國通信安全學術(shù)會議論文集[C];2011年
相關(guān)重要報紙文章 前10條
1 ;以獨特視角透視以太網(wǎng)[N];網(wǎng)絡(luò)世界;2003年
2 浙江;化繁為簡,,管理網(wǎng)絡(luò)[N];電腦報;2005年
3 ;消除網(wǎng)絡(luò)瓶頸[N];中國計算機報;2003年
4 陳思;福祿克三維分析網(wǎng)絡(luò)[N];中國計算機報;2003年
5 ;IT人士的網(wǎng)絡(luò)新體驗[N];通信產(chǎn)業(yè)報;2004年
6 ;以網(wǎng)養(yǎng)網(wǎng)[N];網(wǎng)絡(luò)世界;2003年
7 張興俊;百兆聯(lián)手,升級如此容易[N];中國計算機報;2004年
8 孟霞;教育安全:網(wǎng)絡(luò)凈化從內(nèi)容開始[N];中國計算機報;2006年
9 江蘇省海安高級中學 王祖根;管好校園網(wǎng)絡(luò) 悉心服務(wù)教學[N];中國電腦教育報;2010年
10 沈清;清華同方布局北京育才[N];中國計算機報;2003年
相關(guān)博士學位論文 前1條
1 周安宇;網(wǎng)絡(luò)拓撲圖劃分算法研究[D];哈爾濱工程大學;2014年
相關(guān)碩士學位論文 前10條
1 張慧君;動態(tài)網(wǎng)絡(luò)拓撲圖自動布局研究與應(yīng)用[D];合肥工業(yè)大學;2014年
2 李顯爭;基于Visio的網(wǎng)絡(luò)拓撲圖繪制功能的研究與實現(xiàn)[D];北京郵電大學;2010年
3 劉強;專網(wǎng)散列節(jié)點網(wǎng)絡(luò)成圖方法研究[D];南京郵電大學;2012年
4 許金鳳;大規(guī)模動態(tài)自適應(yīng)圖劃分算法[D];寧波大學;2015年
5 周爽;面向BSP模型的圖數(shù)據(jù)劃分算法的設(shè)計與實現(xiàn)[D];東北大學;2013年
6 林慧嫻;個性化服務(wù)中用戶建模及社區(qū)劃分算法研究[D];南京郵電大學;2015年
7 吳磊;復(fù)雜網(wǎng)絡(luò)的社團劃分算法研究[D];太原理工大學;2016年
8 宋俐;基于模糊聚類的社團劃分算法研究[D];太原理工大學;2016年
9 劉文杰;基于點分割的平衡圖劃分算法研究及其在Spark上的實現(xiàn)[D];蘭州大學;2016年
10 吳迪;基于微博關(guān)注及轉(zhuǎn)發(fā)關(guān)系的社區(qū)劃分算法的改進與實現(xiàn)[D];吉林大學;2016年
本文編號:2451629
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2451629.html