基于H因子的微博社區(qū)發(fā)現(xiàn)方法
[Abstract]:In recent years, Weibo has gradually become the core of social networks. It stands out from the traditional social network and gradually evolves into a new form of information release after having an independent service platform. At present, the number of registered users of Weibo in China has exceeded 500 million, and there are a lot of valuable information in its platform. In the formation of Weibo network, part of Weibo users will gradually form a small group structure. The structure of small groups in Weibo's network is a community phenomenon in the social network. If we can dig up small groups with the same or similar interests, we can better help Weibo users choose the objects of concern. At the same time, the user group with the same interests can carry out accurate advertising to facilitate the development of Weibo's marketing work. In order to meet the demand of infant product Weibo marketing to find the target, this paper presents a method of Weibo community discovery based on user influence. In this paper, by using a subject community discovery method based on user influence and the model of corpses powder recognition based on user behavior constructed in this paper, the users of zombie powder in the community are eliminated, and the purity of the community is guaranteed. The community discovery algorithm proposed in this paper combines the ranking of users' influence based on H-index propagation ability, the text classifier based on support vector machine (SVM) and the recognition model of zombie powder based on user's behavior. Finally, the result data are tested and analyzed from different dimensions. The experimental analysis shows that the proposed community discovery method based on this paper has a high efficiency.
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.092
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張晨逸;孫建伶;丁軼群;;基于MB-LDA模型的微博主題挖掘[J];計(jì)算機(jī)研究與發(fā)展;2011年10期
2 許曉東;肖銀濤;朱士瑞;;微博社區(qū)的謠言傳播仿真研究[J];計(jì)算機(jī)工程;2011年10期
3 袁鵬亮;;基于Pagerank網(wǎng)頁排名技術(shù)計(jì)算方法的探討[J];農(nóng)業(yè)網(wǎng)絡(luò)信息;2007年12期
4 張金增;范明;;一種改進(jìn)的基于最大流的Web社區(qū)挖掘算法[J];計(jì)算機(jī)應(yīng)用;2009年01期
5 王慧芳;黃林鵬;俞晟;;一種增量式的社區(qū)發(fā)現(xiàn)算法研究[J];計(jì)算機(jī)仿真;2008年01期
6 皮靖;邵雄凱;肖雅夫;;基于樸素貝葉斯算法的主題爬蟲的研究[J];計(jì)算機(jī)與數(shù)字工程;2012年06期
7 高琰;谷士文;唐t;;基于鏈接分析的Web社區(qū)發(fā)現(xiàn)技術(shù)的研究[J];計(jì)算機(jī)應(yīng)用研究;2006年07期
8 馬瑞新;鄧貴仕;王曉;;基于擴(kuò)散理論的HITS算法在Web挖掘中的研究與優(yōu)化[J];計(jì)算機(jī)應(yīng)用研究;2012年01期
9 苗家;馬軍;陳竹敏;;一種基于HITS算法的Blog文摘方法[J];中文信息學(xué)報(bào);2011年01期
10 廖福生;江昀;;微博客的信息傳播模式及其發(fā)展分析[J];寧波廣播電視大學(xué)學(xué)報(bào);2010年02期
,本文編號(hào):2445632
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2445632.html