網(wǎng)絡(luò)安全態(tài)勢(shì)的評(píng)估與預(yù)測(cè)技術(shù)研究
[Abstract]:With the arrival of the information age, the Internet has been rapidly developed and popularized. But at the same time, it also brings serious harm to people's life, that is, network security incidents occur frequently. Although there are a variety of network security devices available to protect Internet security, because they are designed for different security issues, they are specific and have different emphases. So this leads to their inability to evaluate and predict the security of the entire network. In this paper, through the detailed analysis and research on the current network security situation assessment and prediction methods, it is shown that how to improve the prediction accuracy and convergence rate of network security situation prediction is still a hot issue to be solved. In order to improve the prediction accuracy of network security situation prediction, a radial basis function neural network security situation prediction model based on dichotomous K-means is proposed in this paper. In this method, the binary K-means clustering algorithm is used to determine the data center and the expansion function of the radial basis function neural network, which makes up for the difficulty of determining the data center of the radial basis function neural network. The experimental results show that this method can improve the prediction accuracy under certain conditions. In order to improve the convergence rate of network security situation prediction, a network security situation prediction method based on improved artificial immune is proposed in this paper. It makes up for the data redundancy in the process of generating the initial antibody randomly. Experimental results show that the proposed method improves the convergence rate of prediction.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP393.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳善學(xué);楊政;朱江;李方偉;;一種基于累加PSO-SVM的網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)模型[J];計(jì)算機(jī)應(yīng)用研究;2015年06期
2 李方偉;鄧武;朱江;;一種基于復(fù)雜網(wǎng)絡(luò)的網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)機(jī)制[J];計(jì)算機(jī)應(yīng)用研究;2015年04期
3 李方偉;鄭波;朱江;張海波;;一種基于AC-RBF神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)方法[J];重慶郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
4 黃同慶;莊毅;;一種實(shí)時(shí)網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)方法[J];小型微型計(jì)算機(jī)系統(tǒng);2014年02期
5 劉雷雷;臧洌;邱相存;;基于Kalman算法的網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)[J];計(jì)算機(jī)與數(shù)字工程;2014年01期
6 謝麗霞;王亞超;于巾博;;基于神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)安全態(tài)勢(shì)感知[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年12期
7 石波;謝小權(quán);;基于D-S證據(jù)理論的網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)方法研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年03期
8 曾斌;鐘萍;;網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)方法的仿真研究[J];計(jì)算機(jī)仿真;2012年05期
9 卓瑩;張強(qiáng);龔正虎;;網(wǎng)絡(luò)態(tài)勢(shì)預(yù)測(cè)的廣義回歸神經(jīng)網(wǎng)絡(luò)模型[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
10 王庚;張景輝;吳娜;;網(wǎng)絡(luò)安全態(tài)勢(shì)預(yù)測(cè)方法的應(yīng)用研究[J];計(jì)算機(jī)仿真;2012年02期
相關(guān)會(huì)議論文 前1條
1 韓偉紅;隋品波;賈焰;;大規(guī)模網(wǎng)絡(luò)安全態(tài)勢(shì)分析與預(yù)測(cè)系統(tǒng)YHSAS[A];第27次全國(guó)計(jì)算機(jī)安全學(xué)術(shù)交流會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前1條
1 孟錦;網(wǎng)絡(luò)安全態(tài)勢(shì)評(píng)估與預(yù)測(cè)關(guān)鍵技術(shù)研究[D];南京理工大學(xué);2012年
,本文編號(hào):2378931
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2378931.html