基于成本的云計算動態(tài)資源分配與故障探針選擇方法
[Abstract]:With the increasing popularity of cloud computing, the scale and complexity of cloud computing is increasing, which brings new challenges to management. Cost factor becomes the main problem that cloud computing management needs to consider. Cloud computing data center scale continues to expand, energy consumption has become the main operating cost of the data center. In order to meet the peak load requirements, cloud computing has prepared a large number of computing resources. Most physical servers are not fully utilized most of the time. However, these servers still consume a lot of energy. According to the change of data center load, it is important for cloud computing to improve the resource utilization of data center and reduce energy consumption by dynamic resource allocation. Cloud computing relies on the support of the underlying computer network, and the increasingly large and complex network makes the cost of network management higher and higher. Traditional fault diagnosis based on passive alarm event association is not applicable in cloud computing networks. Because of its flexibility, active detection may become a solution for cloud computing network fault diagnosis. Since active detection has an impact on network performance, it is necessary to limit the cost of detection. Another research point in this paper is to select probes efficiently under cost constraints. The contributions of this paper are as follows: (1) in order to solve the problem of energy consumption and low resource utilization in virtualized cloud computing data centers, a dynamic resource allocation method, DRAMDT. based on energy consumption cost, is designed in this paper. Considering that there is a large cut-off time difference between instances of virtual machines on a physical server, which may cause the server to remain in a state of incomplete utilization for a long time, resulting in a waste of energy consumption, In DRAMDT algorithm, virtual machine instances are grouped by the virtual machine resource subpool with time rotation. A virtual machine instance within a packet can be placed on the same physical server. Simulation results show that DRAMDT algorithm is effective and feasible. (2) based on the properties of information entropy, this paper proves a formula about the information entropy gain of probe. Based on this formula, an approximate method for calculating the information entropy gain of the probe is proposed. With this approximate calculation method, an efficient fault probe selection method, MEAP.MEAP algorithm, is proposed in this paper. The validity and feasibility of the algorithm are verified by the simulation experiments in this paper.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP3
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙海;劉怡文;艾均;王進法;;Internet動態(tài)節(jié)點特性的層級相關(guān)性研究[J];東北大學(xué)學(xué)報(自然科學(xué)版);2014年02期
2 薛健;李東;張宇;;IP級網(wǎng)絡(luò)拓?fù)錅y量技術(shù)的研究與實現(xiàn)[J];智能計算機與應(yīng)用;2014年01期
3 何靜;郭進利;徐雪娟;;微博關(guān)系網(wǎng)絡(luò)模型研究[J];計算機工程;2013年11期
4 顧亦然;戴曉罡;;基于虛擬力牽引的社團劃分算法[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2013年06期
5 羅明偉;姚宏亮;李俊照;王浩;;一種基于節(jié)點相異度的社團層次劃分算法[J];計算機工程;2014年01期
6 范琪琳;尹浩;林闖;董加卿;宋偉;;互聯(lián)網(wǎng)自治域商業(yè)關(guān)系推測算法[J];計算機學(xué)報;2014年04期
7 焦璨;張楠楠;張敏強;馬紹奇;;基于社會網(wǎng)絡(luò)分析的心理學(xué)科研人員合作網(wǎng)絡(luò)研究[J];吉林大學(xué)社會科學(xué)學(xué)報;2014年04期
8 張寶軍;翁建廣;葉福軍;潘奕靜;;基于EMA的網(wǎng)絡(luò)拓?fù)渥詣踊J];計算機時代;2014年05期
9 張照文;范通讓;;帶有節(jié)點異質(zhì)性和免疫策略流行度的研究方法[J];河北省科學(xué)院學(xué)報;2014年02期
10 曾鳳琳;溫羅生;;二部無標(biāo)度網(wǎng)絡(luò)上病毒傳播模型和免疫策略研究[J];計算機工程;2014年08期
相關(guān)博士學(xué)位論文 前10條
1 楊雅君;動態(tài)圖數(shù)據(jù)挖掘與查詢算法的研究[D];哈爾濱工業(yè)大學(xué);2013年
2 陳t,
本文編號:2305589
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2305589.html