SQL注入漏洞快速檢測技術(shù)的研究
[Abstract]:With the rapid development of Internet era, the application of web-based development is becoming more and more mature, and the technology is becoming more and more complex. Due to the rich functional characteristics of the web application, and the ability to compare, process and propagate the information through the Internet, the web application is easy to become a popular attack target. Therefore, in order to guarantee the security of the web application, it is necessary to detect the security vulnerability of the web application in advance. In the top ten most popular web security vulnerabilities published by OWASP in 2013, an injection vulnerability (mainly SQL injection vulnerability) topped the first major flaw. Therefore, it is very important to study the research of SQL injection vulnerability detection technology. This paper first summarizes the background and significance of the research on SQL injection vulnerability, and then introduces the development of SQL injection vulnerability detection technology at home and abroad. it has been found that previous studies have focused on the adequacy and accuracy of detection cases (i. e. payloads), almost no studies have been made on the relevance and uniqueness of each test case in a large set of detection examples, and when a sql injection vulnerability detection is performed, It is also only a random selection of the detection example from the payloads set, and the regularity of payloads itself is not taken into account. In this paper, we first introduce the SQL injection vulnerability, then outline some advanced detection techniques in the SQL blind note, finally, based on the existing detection technology defect problem, the optimization improvement is put forward from the point of payloads of SQL injection vulnerability. It mainly includes the following four aspects: (1) optimization based on the letter frequency. sometimes in the case where a SQL injection vulnerability has been determined, when the background database plaintext keyword needs to be guessed, we take into account the frequency problems that each English letter appears in the alphabet, and proposes a way to guess the solution based on the letter frequency to improve the detection efficiency, Further, we also propose a double-letter-group-frequency-based approach to guess de-plaintext keywords to reduce background database requests. (2) Optimization based on combination of letter frequency and binary search. In many cases, we cannot determine whether the keywords to be guessed are processed by encryption or not only English letters are included in the keyword. In view of this situation, this paper proposes a combination of letter frequency and binary search to guess the solution key, first carry on a certain number of letter frequency (including the double-letter group frequency) way guess the solution, then use the binary search way to search, Compared with the alphabet, the search efficiency is greatly improved. (3) Optimization based on automatic extension. In view of the correlation between the detection cases, this paper proposes an automatic extension method to automatically select the next payload which may be used to detect the SQL injection vulnerability. This article mainly extends the automatic expansion from five aspects: case variant extension, coding transformation extension, SQL annotation extension, null byte expansion, and split and balance extension. (4) Optimization based on cache weight. aiming at the defects of the prior random enumeration detection example, the invention provides a method for selecting a test case according to a certain sequence when selecting each test case, namely, selecting a test case by adopting a cache weighting method, firstly classifying the payloads set, and setting a caching mechanism under each classification, storing a plurality of commonly used detection cases with larger weights into a caching mechanism, wherein the caching mechanism has the characteristics of dynamic replacement; when the SQL injection vulnerability detection is carried out, the payload is firstly selected from the caching mechanism, and if the detection is not detected, then the payload is selected from the cache mechanism in sequence for detection. Furthermore, in view of the payloads optimization method proposed in this paper, we prove that these optimization methods have improved the detection efficiency, and the advantages are more obvious for the detection of large engineering projects.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP393.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于愛卿,張桂珍;利用錯(cuò)誤信息分析SQL故障[J];青島遠(yuǎn)洋船員學(xué)院學(xué)報(bào);2000年02期
2 蔣丹丹;牛曉楠;;基于SQL的宿舍學(xué)生成績管理系統(tǒng)設(shè)計(jì)與開發(fā)[J];企業(yè)技術(shù)開發(fā);2012年20期
3 劉艷云;;《數(shù)據(jù)庫設(shè)計(jì)與實(shí)現(xiàn)(SQL)》課程教學(xué)改革與實(shí)踐[J];教育教學(xué)論壇;2013年51期
4 任曉東;SQL在中德合作云南二期造林項(xiàng)目管理信息系統(tǒng)中的應(yīng)用[J];林業(yè)調(diào)查規(guī)劃;2005年01期
5 張濤;王行建;;對SQL注入漏洞的研究與防范措施的探討[J];計(jì)算機(jī)時(shí)代;2006年11期
6 楊應(yīng)全,汪德彪;解決圖書館SQL服務(wù)器連接問題[J];現(xiàn)代情報(bào);2005年09期
7 田yN敏;;基于SQL的高職計(jì)算機(jī)實(shí)驗(yàn)室管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];中國科教創(chuàng)新導(dǎo)刊;2011年14期
8 肖海蓉;;SQL中分組查詢的設(shè)計(jì)與應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2009年05期
9 徐廷元;白靜華;;優(yōu)化SQL語句降低時(shí)間復(fù)雜度[J];電腦知識與技術(shù);2009年03期
10 黃保華;馬巖;謝統(tǒng)義;;用于SQL注入檢測的語句塊摘要樹模型[J];信息安全與技術(shù);2012年03期
相關(guān)會(huì)議論文 前2條
1 符俊藝;;用VB和SQL開發(fā)交換機(jī)話務(wù)分析系統(tǒng)[A];海南省通信學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2005)[C];2005年
2 朱虹;舒鵬;;擴(kuò)展SQL實(shí)現(xiàn)DBMS細(xì)粒度訪問控制[A];第二十三屆中國數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 貴州 王偉;列的別名和SQL語句的格式化[N];電腦報(bào);2004年
2 冬盈;SQL語句的自動(dòng)優(yōu)化[N];計(jì)算機(jī)世界;2002年
3 本報(bào)記者 許繼楠;新版SQL Server應(yīng)對大數(shù)據(jù)和云挑戰(zhàn)[N];中國計(jì)算機(jī)報(bào);2012年
4 貴州 王偉;SQL語句中的函數(shù)簡介[N];電腦報(bào);2004年
5 ;微軟建立SQL中國研發(fā)中心[N];人民郵電;2007年
6 郭瑩;微軟SQL Server 2008添新版本[N];中國計(jì)算機(jī)報(bào);2008年
7 西安 鄒捷;VB中利用SQL語句實(shí)現(xiàn)高效數(shù)據(jù)處理[N];電腦報(bào);2002年
8 ;首只攻擊 SQL 服務(wù)器的蠕蟲現(xiàn)身[N];中國電腦教育報(bào);2002年
9 閔翔;人工智能自動(dòng)SQL優(yōu)化[N];中國計(jì)算機(jī)報(bào);2001年
10 王少青;微軟SQL:起于低端,后發(fā)制人[N];中國計(jì)算機(jī)報(bào);2007年
相關(guān)碩士學(xué)位論文 前10條
1 唐韜;基于HBase的SQL轉(zhuǎn)化引擎研究[D];電子科技大學(xué);2014年
2 劉漢江;SQL注入檢測掃描器的設(shè)計(jì)與實(shí)現(xiàn)[D];華南理工大學(xué);2015年
3 李敏兒;餐飲企業(yè)外賣訂餐系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];華南理工大學(xué);2016年
4 章爽敏;SQL注入漏洞快速檢測技術(shù)的研究[D];浙江工商大學(xué);2017年
5 成曉利;Web應(yīng)用SQL注入漏洞測試系統(tǒng)的研究與實(shí)現(xiàn)[D];西南交通大學(xué);2013年
6 趙陽;基于SQL注入的數(shù)據(jù)安全測評技術(shù)研究[D];沈陽工業(yè)大學(xué);2012年
7 趙偉;利用VC與SQL實(shí)現(xiàn)管殼式換熱器的工藝設(shè)計(jì)[D];北京化工大學(xué);2003年
8 王一U,
本文編號:2281214
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2281214.html