天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的微博輿情預(yù)測(cè)模型研究

發(fā)布時(shí)間:2018-09-14 19:22
【摘要】:隨著互聯(lián)網(wǎng)技術(shù)的飛速發(fā)展,微博已經(jīng)成為人們生活中重要的一部分。由微博引發(fā)的輿情也越來越受到各界的關(guān)注。由于微博信息的傳播速度快,傳播范圍廣以及微博消息發(fā)布的任意性,使微博上的信息有真有假,有虛有實(shí)。正面的微博輿情和負(fù)面的微博輿情會(huì)給人們的生活帶來截然不同的影響,有些負(fù)面的微博輿情甚至?xí)䴓?gòu)成危機(jī),嚴(yán)重影響社會(huì)公共安全。因此,對(duì)微博輿情預(yù)測(cè)的研究具有現(xiàn)實(shí)意義。 進(jìn)行微博輿情的預(yù)測(cè),首先要獲取能夠表示微博輿情的數(shù)據(jù)。本文采用離散的時(shí)間序列描述微博輿情的趨勢(shì)。本文以新浪微博平臺(tái)為背景,對(duì)微博文本中的熱點(diǎn)話題進(jìn)行提取、分析并對(duì)微博輿情進(jìn)行預(yù)測(cè)。時(shí)間序列獲取的步驟:一是用新浪微博的API接口,獲取一段時(shí)間內(nèi)的微博文本;二是根據(jù)微博文本的特點(diǎn)進(jìn)行相應(yīng)的預(yù)處理后,使用微博話題統(tǒng)計(jì)的方法,發(fā)現(xiàn)微博熱點(diǎn)話題;三是統(tǒng)計(jì)一段時(shí)間內(nèi)微博熱點(diǎn)話題的回復(fù)數(shù)和轉(zhuǎn)發(fā)數(shù),組成輿情預(yù)測(cè)模型實(shí)驗(yàn)中的時(shí)間序列數(shù)據(jù)。 BP神經(jīng)網(wǎng)絡(luò)能夠較好地?cái)M合微博輿情時(shí)間序列的非線性變化的函數(shù)關(guān)系,能用其預(yù)測(cè)微博輿情,但是也存在著一定的局限性:BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法對(duì)已經(jīng)學(xué)習(xí)的樣本有遺忘。在樣本中有噪聲時(shí),可能會(huì)使BP神經(jīng)網(wǎng)絡(luò)的性能變差;BP神經(jīng)網(wǎng)絡(luò)還存在收斂速度慢、容易陷入局部極小值的缺點(diǎn)。我們做了兩個(gè)工作:一是對(duì)BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行改進(jìn)。在BP神經(jīng)網(wǎng)絡(luò)的輸入層后面添加一個(gè)神經(jīng)元層—輸入承接層,當(dāng)樣本中出現(xiàn)噪聲時(shí),能夠延遲網(wǎng)絡(luò)參數(shù)調(diào)整,從而提高BP神經(jīng)網(wǎng)絡(luò)的性能。二是用遺傳模擬退火算法(GSA)對(duì)BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)參數(shù)進(jìn)行優(yōu)化。GSA具有收斂速度快,能夠較好的避免出現(xiàn)局部極小值的問題,從而彌補(bǔ)BP神經(jīng)網(wǎng)絡(luò)的收斂速度慢,容易陷入局部極小值的不足。 本文對(duì)從已有的微博中獲取的輿情時(shí)間序列,分別用四種輿情預(yù)測(cè)模型進(jìn)行輿情預(yù)測(cè)對(duì)比實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,用GSA優(yōu)化的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的輿情預(yù)測(cè)模型能夠取得較好的預(yù)測(cè)效果。
[Abstract]:With the rapid development of Internet technology, Weibo has become an important part of people's lives. The public opinion caused by Weibo also receives more and more attention from all walks of life. Due to the high speed of Weibo's information, the wide range of dissemination and the arbitrariness of Weibo's news release, the information on Weibo is true and false. The positive public opinion of Weibo and the negative public opinion of Weibo will bring different influence to people's life, and some negative public opinion will even form a crisis, which will seriously affect the social public safety. Therefore, the study of Weibo public opinion prediction has practical significance. Weibo's public opinion prediction, first of all, to obtain the data that can express Weibo public opinion. This paper uses discrete time series to describe the trend of Weibo's public opinion. Based on the platform of Sina Weibo, this paper extracts the hot topics in Weibo's text, analyzes and predicts the public opinion of Weibo. The steps of time series acquisition are as follows: first, using the API interface of Sina Weibo to obtain the Weibo text for a period of time; Third, count the number of replies and retweets of Weibo's hot topics for a period of time. The BP neural network can fit the nonlinear function relation of Weibo's public opinion time series, and can be used to predict the public opinion of Weibo, which is composed of the time series data of public opinion prediction model, the BP neural network can fit the function relation of the nonlinear change of Weibo's public opinion time series, However, there are some limitations in the learning algorithm of the BP neural network. When there is noise in the sample, it may make the performance of BP neural network worse and the BP neural network have the disadvantage of slow convergence rate and easy to fall into local minimum. We have done two works: one is to improve the network structure of BP neural network. After the input layer of BP neural network, we add a neuron layer-input accept layer, which can delay the adjustment of network parameters when there is noise in the sample, so as to improve the performance of BP neural network. Secondly, the genetic simulated annealing algorithm (GSA) is used to optimize the network parameters of BP neural network. The convergence speed of BP neural network is fast, and the problem of local minimum value can be avoided, which can make up for the slow convergence speed of BP neural network. It is easy to fall into the deficiency of local minima. In this paper, the time series of public opinion obtained from Weibo are compared with four models of public opinion prediction. The experimental results show that the improved BP neural network model of public opinion prediction with GSA optimization can achieve better prediction results.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP183;TP393.092

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高輝;王沙沙;傅彥;;Web輿情的長期趨勢(shì)預(yù)測(cè)方法[J];電子科技大學(xué)學(xué)報(bào);2011年03期

2 劉耦耕,賀素良;BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)參數(shù)的計(jì)算機(jī)自動(dòng)確定[J];計(jì)算機(jī)工程與應(yīng)用;2004年13期

3 張虹;鐘華;趙兵;;基于數(shù)據(jù)挖掘的網(wǎng)絡(luò)論壇話題熱度趨勢(shì)預(yù)報(bào)[J];計(jì)算機(jī)工程與應(yīng)用;2007年31期

4 謝云;;模擬退火算法綜述[J];計(jì)算機(jī)應(yīng)用研究;1998年05期

5 葛繼科;邱玉輝;吳春明;蒲國林;;遺傳算法研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2008年10期

6 呂瓊帥;王世卿;;基于遺傳模擬退火算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)[J];計(jì)算機(jī)與現(xiàn)代化;2011年06期

7 馬強(qiáng);馬少華;毛宗磊;;利用遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)[J];科技廣場(chǎng);2008年12期

8 姜?jiǎng)俸?;中國網(wǎng)絡(luò)輿情的現(xiàn)狀及引導(dǎo)對(duì)策研究[J];理論與現(xiàn)代化;2010年01期

9 張劍峰;夏云慶;姚建民;;微博文本處理研究綜述[J];中文信息學(xué)報(bào);2012年04期

10 ;依法監(jiān)督和管理網(wǎng)絡(luò)輿情,防范社會(huì)危機(jī)[J];民主;2012年03期

相關(guān)碩士學(xué)位論文 前1條

1 邱晨子;微博網(wǎng)絡(luò)輿情熱點(diǎn)生長分析模型研究[D];大連海事大學(xué);2013年

,

本文編號(hào):2243643

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2243643.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d754e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com