SCADA系統(tǒng)通信網(wǎng)中的高級持續(xù)性攻擊檢測方法
發(fā)布時間:2018-08-04 18:02
【摘要】:高級持續(xù)性攻擊(advanced persistent threat,APT)作為一種新型攻擊,已成為SCADA(supervisory control and data acquisition)系統(tǒng)安全面臨的主要威脅,而現(xiàn)有的入侵檢測技術(shù)無法有效應(yīng)對這一類攻擊,因此研究有效的APT檢測模型具有重要的意義。提出了一種新的APT攻擊檢測方法,該方法在正常日志行為建模階段改進了對行為模式的表示方式,采用多種長度不同的特征子串表示行為模式,通過基于序列模式支持度來建立正常日志行為輪廓;在充分考慮日志事件時序特征的基礎(chǔ)上,針對APT攻擊行為復(fù)雜多變的特點,提出了基于矩陣相似匹配和判決閾值聯(lián)合的檢測模型。通過對比研究,該檢測方法表現(xiàn)出了良好的檢測性能。
[Abstract]:As a new type of attack, Advanced persistent attack (advanced persistent threat) has become the main threat to the security of SCADA (supervisory control and data acquisition) system. However, the existing intrusion detection technology can not effectively deal with this kind of attack. Therefore, it is of great significance to study the effective APT detection model. In this paper, a new APT attack detection method is proposed. In the normal log behavior modeling stage, this method improves the representation of behavior patterns, and uses a variety of characteristic substrings of different lengths to represent behavior patterns. The normal log behavior profile is established based on the support degree of sequential pattern, and the complex and changeable behavior of APT attack is considered on the basis of fully considering the temporal characteristics of log events. A detection model based on matrix similarity matching and decision threshold is proposed. Through comparative study, the detection method shows good detection performance.
【作者單位】: 安徽科技學(xué)院;清華同方股份有限公司;
【基金】:安徽省高校自然科學(xué)研究項目 安徽科技學(xué)院青年科研項目~~
【分類號】:TP393.08
[Abstract]:As a new type of attack, Advanced persistent attack (advanced persistent threat) has become the main threat to the security of SCADA (supervisory control and data acquisition) system. However, the existing intrusion detection technology can not effectively deal with this kind of attack. Therefore, it is of great significance to study the effective APT detection model. In this paper, a new APT attack detection method is proposed. In the normal log behavior modeling stage, this method improves the representation of behavior patterns, and uses a variety of characteristic substrings of different lengths to represent behavior patterns. The normal log behavior profile is established based on the support degree of sequential pattern, and the complex and changeable behavior of APT attack is considered on the basis of fully considering the temporal characteristics of log events. A detection model based on matrix similarity matching and decision threshold is proposed. Through comparative study, the detection method shows good detection performance.
【作者單位】: 安徽科技學(xué)院;清華同方股份有限公司;
【基金】:安徽省高校自然科學(xué)研究項目 安徽科技學(xué)院青年科研項目~~
【分類號】:TP393.08
【參考文獻】
相關(guān)期刊論文 前4條
1 田新廣;段m#毅;程學(xué)旗;;基于shell命令和多重行為模式挖掘的用戶偽裝攻擊檢測[J];計算機學(xué)報;2010年04期
2 徐洪華;張旭;;網(wǎng)絡(luò)化SCADA系統(tǒng)安全防御策略[J];中國安全生產(chǎn)科學(xué)技術(shù);2011年11期
3 翟東海;李同亮;段維夏;魚江;肖杰;;基于矩陣相似度的最佳樣本塊匹配算法及其在圖像修復(fù)中的應(yīng)用[J];計算機科學(xué);2014年01期
4 彭勇;江常青;謝豐;戴忠華;熊琦;高洋;;工業(yè)控制系統(tǒng)信息安全研究進展[J];清華大學(xué)學(xué)報(自然科學(xué)版);2012年10期
【共引文獻】
相關(guān)期刊論文 前10條
1 肖喜;翟起濱;田新廣;陳小娟;葉潤國;;基于Shell命令和多階Markov鏈模型的用戶偽裝攻擊檢測[J];電子學(xué)報;2011年05期
2 劉明;高玉琢;;一種基于Snort規(guī)則和神經(jīng)網(wǎng)絡(luò)的混合入侵檢測模型[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2011年S1期
3 杜躍進;方}峙,
本文編號:2164670
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2164670.html
最近更新
教材專著