高速網(wǎng)絡(luò)環(huán)境下DPI系統(tǒng)的防噪技術(shù)研究
發(fā)布時(shí)間:2018-06-28 01:23
本文選題:防噪技術(shù) + 局部過載 ; 參考:《北京郵電大學(xué)》2014年碩士論文
【摘要】:以互聯(lián)網(wǎng)為代表的信息革命極大地改變了人們的生產(chǎn)生活方式,成為推動(dòng)經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步的重要因素。但與此同時(shí),互聯(lián)網(wǎng)安全問題日益嚴(yán)重,不良信息隱藏在正常信息下暗流涌動(dòng),個(gè)人信息泄露、網(wǎng)銀失竊等安全事件頻繁發(fā)生。 深度包檢測(cè)技術(shù)在阻止有害信息傳播、預(yù)防信息泄露等方面發(fā)揮了重要作用,被廣泛地應(yīng)用于網(wǎng)絡(luò)入侵檢測(cè)和防護(hù)中。然而,隨著網(wǎng)絡(luò)帶寬的增長(zhǎng)和特征庫(kù)的膨脹,現(xiàn)有的深度包檢測(cè)系統(tǒng)出現(xiàn)性能瓶頸。研究表明,深度包檢測(cè)系統(tǒng)的資源與時(shí)間主要耗費(fèi)在模式匹配上,而廣域網(wǎng)中有大量數(shù)據(jù)包不需要進(jìn)行模式匹配,對(duì)深度包檢測(cè)系統(tǒng)來說屬于噪聲,減少噪聲可以提高系統(tǒng)性能和檢測(cè)效果。因此,本文主要研究深度包檢測(cè)系統(tǒng)的防噪技術(shù)。 本文以基于多核并行處理架構(gòu)的深度包檢測(cè)系統(tǒng)為研究對(duì)象,研究了深度包檢測(cè)系統(tǒng)噪聲流量的分類問題,根據(jù)TCP/IP協(xié)議模型將噪聲流量分為三類:網(wǎng)絡(luò)層噪聲、傳輸層噪聲和應(yīng)用層噪聲,并分析了它們對(duì)深度包檢測(cè)系統(tǒng)的危害。網(wǎng)絡(luò)層噪聲影響系統(tǒng)的流量分發(fā)階段,引發(fā)局部過載問題,傳輸層噪聲對(duì)流量還原階段的連接管理有嚴(yán)重地破壞作用,造成連接爆炸問題,應(yīng)用層噪聲對(duì)深度包檢測(cè)系統(tǒng)的影響較小。根據(jù)危害的大小,本文對(duì)網(wǎng)絡(luò)層噪聲和傳輸層噪聲的防范技術(shù)進(jìn)行了深入地研究,針對(duì)網(wǎng)絡(luò)層噪聲提出了一種基于過濾的自反饋流量分發(fā)策略,針對(duì)傳輸層噪聲設(shè)計(jì)了三級(jí)連接表,并提出了一種新的混合連接管理策略。最后對(duì)防噪方案進(jìn)行測(cè)試,測(cè)試結(jié)果表明:本文所提方法能夠有效地過濾網(wǎng)絡(luò)層和傳輸層噪聲流量,增強(qiáng)了系統(tǒng)的健壯性,系統(tǒng)性能也有所提升。
[Abstract]:The information revolution represented by the Internet has greatly changed people's way of production and life and become an important factor to promote economic development and social progress. But at the same time, the Internet security problem is becoming more and more serious, bad information hidden under the normal information flow, personal information leakage, network theft and other security incidents occur frequently. Depth packet detection plays an important role in preventing harmful information from spreading and information leakage. It is widely used in network intrusion detection and protection. However, with the increase of network bandwidth and the expansion of signature library, the existing depth packet detection system has a performance bottleneck. The research shows that the resources and time of the depth packet detection system are mainly consumed in pattern matching, and a large number of data packets in WAN do not need pattern matching, which is noise to the depth packet detection system. Noise reduction can improve system performance and detection effect. Therefore, this paper mainly studies the noise control technology of depth packet detection system. In this paper, the noise flow classification problem of the depth packet detection system based on the multi-core parallel processing architecture is studied. According to the TCP / IP protocol model, the noise flow is divided into three categories: network layer noise. Transmission layer noise and application layer noise are analyzed and their harm to depth packet detection system is analyzed. The network layer noise affects the flow distribution phase of the system, causing the problem of local overload. The transmission layer noise has a serious damage to the connection management in the traffic reduction stage, resulting in the connection explosion problem. Application layer noise has little effect on depth packet detection system. According to the magnitude of the harm, this paper makes a deep research on the prevention technology of network layer noise and transmission layer noise, and puts forward a self-feedback flow distribution strategy based on filtering for network layer noise. A three-level join table is designed for transport layer noise, and a new hybrid join management strategy is proposed. Finally, the noise control scheme is tested. The test results show that the proposed method can effectively filter the network layer and transport layer noise flow, enhance the robustness of the system, and improve the performance of the system.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 楊武,方濱興,云曉春,張宏莉;基于骨干網(wǎng)的并行集群入侵檢測(cè)系統(tǒng)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2004年03期
2 陳一驕;盧錫城;孫志剛;;面向流管理的哈希算法研究[J];計(jì)算機(jī)工程與科學(xué);2008年04期
3 程光,龔儉,丁偉;基于統(tǒng)計(jì)分析的高速網(wǎng)絡(luò)分布式抽樣測(cè)量模型[J];計(jì)算機(jī)學(xué)報(bào);2003年10期
4 賴海光;黃皓;謝俊元;;PABCS:一種用于并行入侵檢測(cè)的流量劃分算法[J];計(jì)算機(jī)學(xué)報(bào);2007年04期
5 謝云;柳廳文;喬登科;孫永;劉金剛;;HCAA:一種哈希沖突過度的動(dòng)態(tài)解決算法[J];計(jì)算機(jī)應(yīng)用與軟件;2011年11期
6 胡侃,夏紹瑋;基于大型數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)采掘:研究綜述[J];軟件學(xué)報(bào);1998年01期
7 王志佳;顧健;;一種改進(jìn)的自動(dòng)機(jī)壓縮算法在深度包檢測(cè)中的應(yīng)用[J];信息網(wǎng)絡(luò)安全;2010年10期
,本文編號(hào):2076088
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2076088.html
最近更新
教材專著