基于RECURDYN的某廂式貨車(chē)多工況平順性分析與優(yōu)化
本文選題:廂式貨車(chē) 切入點(diǎn):鋼板彈簧 出處:《江蘇大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著汽車(chē)工業(yè)的飛速發(fā)展,許多企業(yè)對(duì)商用車(chē)的開(kāi)發(fā)已從滿(mǎn)足基本的運(yùn)輸需求轉(zhuǎn)向?qū)π旭偲巾樞院筒倏v穩(wěn)定性等更高性能的追求。廂式貨車(chē)作為最常見(jiàn)的物流運(yùn)輸車(chē)輛,在長(zhǎng)距離行駛過(guò)程中,更應(yīng)注重車(chē)輛的行駛平順性,緩解駕乘人員的疲勞,確保駕駛安全性。本課題結(jié)合某企業(yè)對(duì)某廂式貨車(chē)平順性改進(jìn)項(xiàng)目,應(yīng)用多體動(dòng)力學(xué)軟件RecurDyn建立整車(chē)動(dòng)力學(xué)模型并對(duì)模型中影響行駛平順性的參數(shù)進(jìn)行分析和優(yōu)化。首先,介紹汽車(chē)平順性的國(guó)內(nèi)外研究現(xiàn)狀及鋼板彈簧建模方法,包括有限元法、離散梁法、中性面法及三連桿法。詳細(xì)介紹RecurDyn軟件的基本理論,包括:相對(duì)坐標(biāo)系統(tǒng)、相對(duì)坐標(biāo)運(yùn)動(dòng)學(xué)方程、函數(shù)表達(dá)式、元模型優(yōu)化算法和二次開(kāi)發(fā)。采用SAE三連桿法在RecurDyn中建立鋼板彈簧動(dòng)力學(xué)模型。考慮實(shí)際鋼板彈簧工作時(shí),由于各簧片間摩擦接觸產(chǎn)生的遲滯特性,提出在連桿旋轉(zhuǎn)副中引入Sliding摩擦力學(xué)模型,模擬各簧片間的接觸摩擦;為確保所建模型的力學(xué)特性與實(shí)際相符,采用DOE實(shí)驗(yàn)分析找出影響鋼板彈簧剛度特性和遲滯特性的主要參數(shù);建立鋼板彈簧有限元模型,以仿真獲得的時(shí)間-位移曲線(xiàn)為目標(biāo)曲線(xiàn),利用元模型優(yōu)化算法,對(duì)選定的參數(shù)進(jìn)行辯識(shí),獲得滿(mǎn)足設(shè)計(jì)要求的鋼板彈簧三連桿模型。對(duì)整車(chē)模型進(jìn)行分析,在RecurDyn中建立駕駛室、車(chē)廂、前后懸架總成及輪胎模型的各個(gè)子系統(tǒng),單獨(dú)調(diào)試后根據(jù)各子系統(tǒng)間的約束關(guān)系進(jìn)行裝配,得到整車(chē)動(dòng)力學(xué)模型。為提高整車(chē)平順性仿真效率,對(duì)脈沖路面和隨機(jī)路面進(jìn)行適當(dāng)簡(jiǎn)化,之后分別進(jìn)行脈沖路面和隨機(jī)路面激勵(lì)下不同車(chē)速的平順性仿真。對(duì)實(shí)際樣車(chē)進(jìn)行脈沖路面和隨機(jī)路面行駛條件下不同車(chē)速的道路平順性試驗(yàn),對(duì)比仿真結(jié)果,驗(yàn)證仿真模型的正確性。以所建整車(chē)動(dòng)力學(xué)模型為樣機(jī),采用DOE實(shí)驗(yàn)分析,分析懸架參數(shù)及駕駛室懸置參數(shù)對(duì)平順性的影響趨勢(shì),確定平順性?xún)?yōu)化時(shí)各設(shè)計(jì)變量的取值范圍;以懸架偏頻、懸架動(dòng)撓度及車(chē)輪相對(duì)地面動(dòng)載荷為約束條件;參照GB/T 4970-2009《汽車(chē)平順性試驗(yàn)方法》,以駕駛室地板垂向加權(quán)加速度均方根值為優(yōu)化的目標(biāo)函數(shù),并基于C#語(yǔ)言在RecurDyn/ProcessNET二次開(kāi)發(fā)環(huán)境中編寫(xiě)其計(jì)算程序;采用元模型優(yōu)化算法對(duì)整車(chē)模型進(jìn)行優(yōu)化,為該廂式貨車(chē)的平順性改進(jìn)提出參考方案。
[Abstract]:With the rapid development of automobile industry, the development of commercial vehicle in many enterprises has changed from meeting the basic transportation demand to the pursuit of higher performance, such as ride comfort and handling stability. In the long distance driving process, we should pay more attention to the ride comfort of the vehicle, alleviate the fatigue of the driver and ensure the driving safety. The multi-body dynamics software RecurDyn is used to establish the vehicle dynamics model, and the parameters affecting the ride comfort in the model are analyzed and optimized. Firstly, the domestic and foreign research status of vehicle ride comfort and the method of leaf spring modeling, including finite element method, are introduced. Discrete beam method, neutral plane method and three-link method. The basic theory of RecurDyn software is introduced in detail, including: relative coordinate system, relative coordinate kinematics equation, function expression, Element model optimization algorithm and secondary development. The dynamic model of leaf spring is established in RecurDyn by using SAE three-link method. Considering the hysteresis characteristics of the actual leaf spring due to friction contact between the spring and the spring, the dynamic model of the leaf spring is established by using the three-link method of SAE. In order to ensure that the mechanical properties of the model are in accordance with the practice, a Sliding tribological model is introduced to simulate the contact friction between the Reed and the spring in the rotating pair of connecting rod. The main parameters affecting the stiffness and hysteresis characteristics of leaf spring are found out by DOE experiment, and the finite element model of leaf spring is established. The time-displacement curve obtained by simulation is taken as the target curve, and the optimization algorithm of element model is used. Identify the selected parameters, obtain the three-link model of leaf spring which meets the design requirements, analyze the model of the whole vehicle, set up each subsystem of cab, carriage, front and rear suspension assembly and tire model in RecurDyn. In order to improve the simulation efficiency of vehicle ride comfort, the pulse road surface and the random road surface are properly simplified, and the dynamic model of the whole vehicle is obtained by assembling according to the constraint relation among the subsystems. After that, the simulation of the ride comfort of different vehicle speeds under impulse and random pavement excitation is carried out, and the road ride comfort test of the actual sample vehicle is carried out under the conditions of pulse road surface and random road surface, and the simulation results are compared. The validity of the simulation model is verified. Taking the dynamic model of the whole vehicle as a prototype, the influence trend of suspension parameters and cab mounting parameters on ride comfort is analyzed by using DOE experimental analysis, and the value range of each design variable when the ride comfort is optimized is determined. Taking suspension bias frequency, suspension dynamic deflection and wheel relative ground dynamic load as constraint conditions, referring to GB/T 4970-2009 < vehicle ride comfort test method], taking the root mean square value of vertical weighted acceleration of cab floor as the optimized objective function, Based on C # language, the calculation program is compiled in RecurDyn/ProcessNET secondary development environment, and the optimization algorithm of metamodel is used to optimize the whole vehicle model, which provides a reference scheme for improving the ride comfort of the van.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U461.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃玉亭;李韶華;楊紹普;;汽車(chē)懸架鋼板彈簧的剛度計(jì)算與試驗(yàn)驗(yàn)證[J];汽車(chē)工程師;2016年09期
2 程源;余海濤;支程佳;;專(zhuān)用車(chē)輛市場(chǎng)營(yíng)銷(xiāo)決策的改革與發(fā)展方向[J];中國(guó)商論;2016年02期
3 王勇;李舜酩;張?jiān)?曹倩倩;;漸變剛度鋼板彈簧的非線(xiàn)性有限元分析[J];振動(dòng).測(cè)試與診斷;2015年05期
4 龔海清;楊U_梁;陳彥龍;袁爽;羅仁宏;;基于離散Beam梁法的變截面鋼板彈簧建模及仿真[J];武漢科技大學(xué)學(xué)報(bào);2015年04期
5 鄭海騰;李尚平;李冰;湯毓;;基于諧波疊加法的標(biāo)準(zhǔn)路面譜重構(gòu)[J];機(jī)械研究與應(yīng)用;2014年06期
6 古玉鋒;呂彭民;單增海;;汽車(chē)鋼板彈簧多體動(dòng)力學(xué)建模綜述[J];汽車(chē)工程;2014年12期
7 侯永濤;魏銀雷;曾發(fā)林;黃娟;;基于ADAMS鋼板彈簧多體動(dòng)力學(xué)模型的參數(shù)辨識(shí)[J];機(jī)械設(shè)計(jì);2014年09期
8 李凌陽(yáng);張?jiān)魄?覃剛;胡三寶;侯宇明;;鋼板彈簧建模方法研究[J];汽車(chē)工程;2013年07期
9 陳超;魏來(lái)生;趙韜碩;;車(chē)輛多體動(dòng)力學(xué)仿真中的路面模型構(gòu)造方法的研究[J];車(chē)輛與動(dòng)力技術(shù);2012年01期
10 宗長(zhǎng)富;陳雙;馮剛;尹剛;向暉;;基于頻率加權(quán)濾波的汽車(chē)平順性評(píng)價(jià)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2011年06期
相關(guān)重要報(bào)紙文章 前1條
1 韓林;;廂式汽車(chē)產(chǎn)業(yè)分析及展望[N];機(jī)電商報(bào);2005年
相關(guān)博士學(xué)位論文 前4條
1 魏昕;基于元模型的全局優(yōu)化算法研究[D];華中科技大學(xué);2012年
2 孫麗;基于操縱穩(wěn)定性的混合動(dòng)力客車(chē)平順性評(píng)價(jià)與優(yōu)化[D];江蘇大學(xué);2012年
3 顧紀(jì)超;基于混合元模型的新型全局最優(yōu)化方法及其在汽車(chē)設(shè)計(jì)中的應(yīng)用[D];湖南大學(xué);2011年
4 于學(xué)華;汽車(chē)平順性技術(shù)理論與實(shí)踐研究[D];東北林業(yè)大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 涂俊波;基于ADAMS的汽車(chē)前懸架優(yōu)化及整車(chē)平順性研究[D];遼寧工業(yè)大學(xué);2016年
2 劉攀;重卡鋼板彈簧的有限元分析[D];長(zhǎng)安大學(xué);2015年
3 李常鑫;汽車(chē)鋼板彈簧力學(xué)性能及其壽命分析[D];重慶理工大學(xué);2013年
4 崔元鑫;基于虛擬樣機(jī)技術(shù)的某前置前驅(qū)轎車(chē)建模與平順性仿真分析[D];吉林大學(xué);2013年
5 胡永明;基于多體動(dòng)力學(xué)的整車(chē)建模與仿真分析研究[D];大連理工大學(xué);2012年
6 劉偉;基于虛擬樣機(jī)技術(shù)的重型車(chē)輛動(dòng)力學(xué)建模與仿真分析[D];青島大學(xué);2009年
7 鞠成超;重型商用車(chē)行駛平順性分析與優(yōu)化[D];湖南大學(xué);2009年
8 李莉;基于ADAMS/Car的某轎車(chē)平順性仿真分析與改進(jìn)[D];吉林大學(xué);2007年
9 李軼石;基于有限元的某多片鋼板彈簧性能仿真研究[D];湖南大學(xué);2007年
10 李淼;一汽集團(tuán)中重型卡車(chē)產(chǎn)品發(fā)展戰(zhàn)略及其營(yíng)銷(xiāo)策略研究[D];吉林大學(xué);2006年
,本文編號(hào):1625458
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1625458.html