新型電驅(qū)動(dòng)叉車舉升系統(tǒng)及其節(jié)能效果分析
本文關(guān)鍵詞:新型電驅(qū)動(dòng)叉車舉升系統(tǒng)及其節(jié)能效果分析 出處:《吉林大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 叉車 舉升系統(tǒng) 滾動(dòng)螺旋副 節(jié)能 功率鍵合圖 模糊PID控制器 MATLAB/Simulink
【摘要】:叉車是起重、搬運(yùn)機(jī)械之一,在港口、倉庫等場合,物流、生產(chǎn)等領(lǐng)域發(fā)揮著重要作用。鑒于液壓系統(tǒng)的比功率高、承載能力強(qiáng)、工作平穩(wěn)、可靠性高,目前的主流叉車仍使用液壓舉升系統(tǒng)。但是由于液壓系統(tǒng)在使用過程中涉及機(jī)械能、液壓能之間的轉(zhuǎn)換,而且介質(zhì)在管路、液壓閥中的能量損耗較為嚴(yán)重,因此液壓舉升機(jī)構(gòu)的能量利用率較低。據(jù)工程實(shí)測數(shù)據(jù),本文實(shí)驗(yàn)對象,叉車CPD30的能量利用率不足40%。換言之,超過60%的能量損失在做功過程中。當(dāng)前,針對工程機(jī)械能量利用率的提高已經(jīng)產(chǎn)生了許多方法,諸如:動(dòng)、勢能回收技術(shù)和混合動(dòng)力技術(shù)等,但是此類高端技術(shù)需要依托高效的機(jī)械傳動(dòng)發(fā)揮作用。高效率的傳動(dòng)環(huán)節(jié)可以直接提高從原動(dòng)機(jī)到執(zhí)行端的能量利用率,還可以匹配以能量回收、混合動(dòng)力系統(tǒng),實(shí)現(xiàn)高水平的能量利用率。本文著眼于電驅(qū)動(dòng)叉車舉升機(jī)構(gòu)傳動(dòng)效率提升,著重介紹了一種新型叉車舉升系統(tǒng),該系統(tǒng)以滾動(dòng)螺旋副取代原液壓缸舉升系統(tǒng),減小工作過程中的能量損失。滾動(dòng)螺旋副的傳動(dòng)效率高達(dá)90%~98%,正、反向傳動(dòng)時(shí)都可以實(shí)現(xiàn)較高的能量利用率;而且滾動(dòng)螺旋副不能自鎖,這給反向傳動(dòng)過程中的能量回收提供了可能;加之滾動(dòng)螺旋副的剛度大、傳動(dòng)精度高,在旋轉(zhuǎn)運(yùn)動(dòng)和直線運(yùn)動(dòng)的轉(zhuǎn)化過程中易于保證高響應(yīng)速度和定位精度。為驗(yàn)證新系統(tǒng)的動(dòng)力學(xué)性能、計(jì)算其能量損耗,需要為其建立動(dòng)力學(xué)模型。機(jī)械傳動(dòng)系統(tǒng)的動(dòng)力學(xué)模型使用功率鍵合圖理論建立,并最終以系統(tǒng)狀態(tài)空間表達(dá)式的形式呈現(xiàn);新型舉升系統(tǒng)選用了無刷直流電機(jī)作為原動(dòng)機(jī),無刷直流電機(jī)的動(dòng)力學(xué)模型自MATLAB/Simscape的模型庫中調(diào)用;無刷直流電機(jī)使用電流、轉(zhuǎn)速雙閉環(huán)系統(tǒng)進(jìn)行調(diào)速,轉(zhuǎn)速閉環(huán)中還使用了獨(dú)立設(shè)計(jì)的基于模糊邏輯的PID控制方法。將機(jī)械傳動(dòng)系統(tǒng)的動(dòng)力學(xué)模型、無刷直流電機(jī)及其控制器模型、叉車蓄電池模型聯(lián)合起來,即可在MATLAB軟件平臺(tái)上進(jìn)行仿真,用仿真得到的能量利用率和貨叉的速度軌跡來評價(jià)新系統(tǒng)的工作表現(xiàn)。仿真結(jié)果顯示:在動(dòng)態(tài)特性方面,設(shè)計(jì)的絲杠舉升系統(tǒng)能夠很好地按照原叉車的設(shè)計(jì)要求保證貨叉的舉升速度、加速度;在節(jié)能效果方面,設(shè)計(jì)的絲杠舉升系統(tǒng)在滿載(3000kg負(fù)載)下的能量利用率高達(dá)56.23%,在1170kg載荷狀態(tài)下為49.91%,在620kg載荷狀態(tài)下為29.19%。為了驗(yàn)證使用滾動(dòng)螺旋副的絲杠舉升系統(tǒng)的可實(shí)現(xiàn)性,及其相較于液壓舉升系統(tǒng)的高效性,在叉車CPD30上進(jìn)行了絲杠舉升系統(tǒng)和液壓舉升系統(tǒng)的對照實(shí)驗(yàn)。結(jié)果顯示,在多種載荷工況下,滾動(dòng)螺旋副都有較高的能量利用率,在620kg載荷狀態(tài)下,能量利用率達(dá)到31.56%,高過液壓舉升系統(tǒng)2.01%,在1170kg載荷狀態(tài)下,能量利用率達(dá)到45.79%,高過液壓舉升系統(tǒng)7.45%。在動(dòng)力學(xué)性能方面,在620kg載荷狀態(tài)下,絲杠舉升系統(tǒng)的平均舉升速度比液壓系統(tǒng)快0.018m/s,在1170kg載荷狀態(tài)下,絲杠舉升系統(tǒng)的平均速度比液壓系統(tǒng)快0.003m/s。本文以仿真的方式估算了絲杠舉升系統(tǒng)的能量利用率;對比于液壓舉升系統(tǒng),以實(shí)驗(yàn)的方式驗(yàn)證了絲杠舉升系統(tǒng)的動(dòng)力學(xué)性能和節(jié)能效果。本文證實(shí)了新系統(tǒng)的開發(fā)潛力,為以后的高效系統(tǒng)開發(fā)提供了更好的機(jī)械平臺(tái),為其他工程機(jī)械的改型研發(fā)提供了參照。
[Abstract]:The forklift is lifting, handling machinery in one of the ports, warehouse and other occasions, logistics, production and other fields play an important role. In view of the hydraulic system of high specific power, strong bearing capacity, stable operation, high reliability, the current mainstream forklift still use hydraulic lifting system. But because the hydraulic system relates to mechanical energy in the process of using in the conversion between the hydraulic energy, and medium in the pipeline, the energy loss in the hydraulic valve is more serious, so the hydraulic lifting mechanism of the energy utilization rate is low. According to the measured data, the experimental object, CPD30 forklift the energy utilization rate of less than 40%. in other words, more than 60% of the energy loss in the work process. At present, to improve the energy efficiency of construction machinery has produced many methods, such as: dynamic, energy recovery technology and hybrid technology, but such high-end technology need to support the efficient mechanical transmission The essential role of transmission efficiency. From the original motivation to perform terminal energy utilization directly improve, also can match with energy recovery, hybrid power system, to achieve a high level of energy efficiency. This paper focuses on the electric forklift lifting mechanism to enhance the transmission efficiency, emphatically introduces a new type forklift lifting system, the system to replace the original ball screw cylinder lifting system, reduce the energy loss in the working process of screw rolling. The transmission efficiency is as high as 90%~98%, and can achieve high energy utilization rate of reverse transmission; and the ball screw can not lock, which gives the energy recovery in the process of reverse transmission may be provided; and rolling screw pair of stiffness, high precision, easy to ensure high response speed and positioning accuracy in the transformation process of rotary motion and linear motion. In order to verify the new system dynamics The performance calculation of the energy loss, need to establish a dynamic model for the dynamics model of mechanical transmission system using power bond graph theory is established, and the state space expression of the form; new type of lifting system uses a brushless DC motor as the prime mover, called model base dynamic model of Brushless DC motor MATLAB/Simscape the brushless DC motor; current and speed double closed loop control system for speed, speed loop are used in independent design of the fuzzy logic control method based on PID. The dynamic model of the mechanical transmission system, brushless DC motor and its controller model, forklift battery models are combined, can be simulated on the platform of MATLAB software the performance evaluation system, to the new speed track rate and fork of the use of energy simulation. The simulation results show that the dynamic characteristics Of hand, screw lifting system design can be well in accordance with the original design requirements to ensure forklift fork lifting speed and acceleration; the effect of saving energy, the design of screw lifting system in full load (3000kg load) under the high energy utilization rate reached 56.23%, in the 1170kg under load is 49.91% 620kg in load state under the 29.19%. in order to verify the feasibility of the use of ball screw screw lifting system, and its efficiency compared to the hydraulic lifting system, the control experiment of screw lifting system and hydraulic lifting system of the forklift in CPD30. The results show that under different loads, ball screw has high energy utilization rate in 620kg, under load, the energy utilization rate of 31.56%, higher than 2.01% in 1170kg hydraulic lifting system, load condition, the energy utilization rate of 45.79%, higher than the hydraulic lifting system in 7.45%. power School performance, in the 620kg under load, the average lifting speed of screw lifting system than hydraulic system. 0.018m/s, 1170kg in the load condition, the average speed of screw lifting system of hydraulic system based on the 0.003m/s. than the fast simulation method to estimate the screw lifting system of energy utilization; compared to the hydraulic lifting system, dynamic performance and energy saving screw lifting system was validated by the experimental method. This paper proves that the new system development potential, provides a better platform for the development of efficient mechanical system for the future, provide a reference for other research. Modification of engineering machinery
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 狄廷芳;;轎車行李箱自舉升系統(tǒng)設(shè)計(jì)[J];上海汽車;2012年06期
2 裴玲,葉仲新,員洪杰,段其德,潘習(xí)炎;軍車液壓翻轉(zhuǎn)舉升系統(tǒng)模擬試驗(yàn)臺(tái)設(shè)計(jì)[J];汽車工藝與材料;2002年04期
3 汪炳昌;鄧彬;;淺談工程自卸車側(cè)置式液壓舉升系統(tǒng)[J];機(jī)電信息;2010年18期
4 王陽;;十年后的卡車Ⅱ[J];物流技術(shù)與應(yīng)用(貨運(yùn)車輛);2011年06期
5 朱平;;探討630E卡車液壓舉升系統(tǒng)改造[J];露天采礦技術(shù);2013年05期
6 杜鵬程;馮建偉;;自卸汽車液壓舉升系統(tǒng)的設(shè)計(jì)改進(jìn)[J];專用汽車;2006年11期
7 王成虎;;礦用自卸車液壓舉升系統(tǒng)原理及常見故障排除[J];礦業(yè)裝備;2012年07期
8 張華;;某腹舉自卸車舉升系統(tǒng)的優(yōu)化設(shè)計(jì)[J];中國高新技術(shù)企業(yè);2013年11期
9 唐為民;郭亞軍;王磊;;基于AMESim的雷達(dá)舉升系統(tǒng)設(shè)計(jì)分析[J];機(jī)械研究與應(yīng)用;2014年04期
10 李彬;孫鐵英;;工程自卸車液壓舉升系統(tǒng)幾種常見的認(rèn)識誤區(qū)[J];商用汽車;2006年11期
相關(guān)會(huì)議論文 前2條
1 程俊峰;;框架車舉升系統(tǒng)原理的研究分析[A];上海物流工程學(xué)會(huì)2003’論文集[C];2003年
2 劉慶;李耐文;;自卸車氣控前置液壓舉升系統(tǒng)的開發(fā)[A];山東汽車工程學(xué)會(huì)第九次學(xué)術(shù)年會(huì)優(yōu)秀論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 記者 劉堅(jiān);海沃液壓頂開啟系統(tǒng)亮相京城[N];中國汽車報(bào);2001年
相關(guān)碩士學(xué)位論文 前10條
1 王振永;HSC55P履帶式自卸車高位舉升系統(tǒng)研究[D];長安大學(xué);2015年
2 魏躍斌;HITFIL主磁鐵液壓同步舉升系統(tǒng)的研究[D];蘭州理工大學(xué);2016年
3 林潘英;基于ARM的車載雷達(dá)調(diào)平及舉升系統(tǒng)的設(shè)計(jì)[D];東南大學(xué);2015年
4 孫榮鑫;氣井云壓力舉升系統(tǒng)設(shè)計(jì)[D];西南石油大學(xué);2016年
5 張守才;重型卡車駕駛室舉升系統(tǒng)液壓油真空加注的優(yōu)化[D];江蘇大學(xué);2016年
6 張亞歡;舉升系統(tǒng)運(yùn)動(dòng)規(guī)劃與性能優(yōu)化[D];武漢科技大學(xué);2016年
7 王雷;新型電驅(qū)動(dòng)叉車舉升系統(tǒng)及其節(jié)能效果分析[D];吉林大學(xué);2017年
8 褚新峰;車載雷達(dá)自動(dòng)調(diào)平與舉升系統(tǒng)初步研究[D];華中科技大學(xué);2007年
9 李波;半掛車車架及其舉升系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)與分析[D];湖南大學(xué);2014年
10 張春鵬;全液壓自動(dòng)貓道舉升系統(tǒng)研究[D];吉林大學(xué);2014年
,本文編號:1436276
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1436276.html