天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 旅游管理論文 >

基于案例推理的旅游目的地個性化推薦研究

發(fā)布時間:2019-06-05 06:31
【摘要】:隨著我國經(jīng)濟和科技的迅猛發(fā)展,互聯(lián)網(wǎng)技術(shù)的日益進步,人們生活水平的逐漸提高,人們對能夠滿足個人興趣和偏好的自助游的需求也隨之增大。由于互聯(lián)網(wǎng)中充斥著大量信息,用戶在網(wǎng)上查找旅游相關(guān)信息時難以獲得自己需要的有效旅游信息。旅游推薦系統(tǒng)作為解決這一問題的方法成為學(xué)者關(guān)注的熱點,如何向用戶推薦能夠滿足其個性化旅游需求的相關(guān)旅游資訊成為研究旅游推薦的關(guān)鍵點。目前的旅游推薦系統(tǒng)通常存在冷啟動和數(shù)據(jù)稀疏的問題,并且推薦內(nèi)容都是以旅游產(chǎn)品為主,一些為用戶推薦旅游目的地的系統(tǒng)也存在推薦的旅游目的地咨詢單一,不夠豐富的情況。本文著重考慮用戶的興趣,構(gòu)建以游記為主的案例庫,采用基于案例推理的方法構(gòu)建旅游目的地個性化推薦模型,為用戶提供滿足其個性化需求且內(nèi)容豐富的旅游目的地信息,并在一定程度上解決了數(shù)據(jù)稀疏和冷啟動的問題。本文的主要研究工作如下:(1)構(gòu)建了適合基于案例推理方法的旅游目的地模型和案例用戶偏好模型。從"螞蜂窩"網(wǎng)站中獲取用戶、游記等信息形成基本案例庫,并利用構(gòu)建的用戶旅游偏好算法得到案例用戶旅游偏好度。根據(jù)用戶偏好度和改進的K-Means算法對案例用戶按照旅游目的地類型進行分類,形成各種旅游目的地類型子案例庫。在檢索案例時,只用檢索待推薦用戶所屬類型的旅游目的地類型子案例庫,使檢索效率得到有效提高。(2)構(gòu)建了案例屬性權(quán)重算法,利用調(diào)查問卷中用戶對旅游要素的評價和案例屬性權(quán)重算法對案例屬性權(quán)重進行確定。(3)構(gòu)建了改進的信任度算法,將信任度引入基于案例推理的旅游目的地個性化推薦系統(tǒng)中,并構(gòu)建了加入信任度的案例相似度算法,提高推薦結(jié)果的準確度。(4)將基于案例推理的方法運用到旅游目的地個性化推薦系統(tǒng)中,利用Mathematica軟件對相關(guān)算法進行構(gòu)建和表示,根據(jù)用戶數(shù)據(jù)進行實例驗證,初步實現(xiàn)了旅游目的地和案例游記的推薦。本文將基于案例推理技術(shù)、用戶旅游興趣和信任度的結(jié)合,對旅游者實現(xiàn)了個性化的旅游目的地和游記的推薦。既滿足了用戶的個性化需求,又為用戶提供了豐富的旅游信息。通過實例推薦和實證結(jié)果,證明了推薦算法的有效性和準確度。本文的研究對個性化旅游目的地推薦系統(tǒng)提供了一定的參考價值。
[Abstract]:With the rapid development of economy and science and technology in our country, with the increasing progress of Internet technology and the gradual improvement of people's living standards, the demand for self-help travel which can meet personal interests and preferences is also increasing. Because the Internet is full of a lot of information, it is difficult for users to obtain the effective tourism information they need when they look up tourism-related information on the Internet. As a method to solve this problem, tourism recommendation system has become the focus of scholars' attention. How to recommend relevant tourism information to users to meet their personalized tourism needs has become the key point of tourism recommendation research. At present, the tourism recommendation system usually has the problems of cold start and sparse data, and the recommendation content is mainly tourism products, and some systems that recommend tourism destination for users also have a single recommended tourism destination consultation. A situation that is not rich enough. This paper focuses on the interest of users, constructs a case base based on travel notes, and constructs a personalized recommendation model of tourism destination based on case-based reasoning, which provides users with rich tourism destination information to meet their personalized needs. To a certain extent, the problems of sparse data and cold start are solved. The main research work of this paper is as follows: (1) the tourism destination model and case user preference model suitable for case-based reasoning are constructed. The basic case base is formed by obtaining the information of users and travel notes from the "polar cell" website, and the tourism preference degree of the case users is obtained by using the constructed user tourism preference algorithm. According to the user preference and the improved K-Means algorithm, the case users are classified according to the type of tourism destination, and the subcase base of various types of tourism destination is formed. In the retrieval of cases, only the tourism destination type subcase base of the type to be recommended is searched, so that the retrieval efficiency can be effectively improved. (2) the case attribute weight algorithm is constructed. The evaluation of tourism elements in the questionnaire and the algorithm of case attribute weight are used to determine the case attribute weight. (3) an improved trust algorithm is constructed. The trust degree is introduced into the personalized recommendation system of tourism destination based on case-based reasoning, and the case similarity algorithm with trust degree is constructed. Improve the accuracy of recommendation results. (4) the method of case-based reasoning is applied to the personalized recommendation system of tourism destination, and the related algorithms are constructed and represented by Mathematica software, and the examples are verified according to the user data. The recommendation of tourist destination and case travel notes has been preliminarily realized. Based on case-based reasoning technology, the combination of users' tourism interest and trust, this paper realizes the recommendation of personalized tourism destination and travel notes for tourists. It not only meets the personalized needs of users, but also provides users with rich tourism information. The effectiveness and accuracy of the recommendation algorithm are proved by example recommendation and empirical results. The research in this paper provides a certain reference value for personalized tourism destination recommendation system.
【學(xué)位授予單位】:海南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F592

【參考文獻】

相關(guān)期刊論文 前10條

1 李霞;尹川東;袁云;;旅游路線個性化推薦算法比較分析[J];計算機技術(shù)與發(fā)展;2016年09期

2 方瀟;劉曉寒;柴永平;周文曼;;一種基于協(xié)同過濾的旅游行程推薦算法[J];地理空間信息;2016年07期

3 文俊浩;何波;胡遠鵬;;基于社交網(wǎng)絡(luò)用戶信任度的混合推薦算法研究[J];計算機科學(xué);2016年01期

4 林樹寬;柳帥;陳祖龍;喬建忠;;基于分類層次偏好樹和用戶間信任度的位置推薦方法[J];小型微型計算機系統(tǒng);2015年08期

5 胡田;郭英之;;旅游消費者在線購買旅游產(chǎn)品的信任度、滿意度及忠誠度研究[J];旅游科學(xué);2014年06期

6 麻風(fēng)梅;;基于游客綜合興趣度的旅游景點推薦[J];測繪與空間地理信息;2014年03期

7 吳珊燕;許鑫;;基于案例推理的菜譜推薦系統(tǒng)研究[J];現(xiàn)代圖書情報技術(shù);2013年12期

8 虞娟;;基于本體的CBR及其在旅游產(chǎn)品智能推薦系統(tǒng)的應(yīng)用研究[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報;2013年06期

9 楊興耀;于炯;吐爾根·依布拉音;廖彬;錢育蓉;;融合奇異性和擴散過程的協(xié)同過濾模型[J];軟件學(xué)報;2013年08期

10 王明佳;韓景倜;韓松喬;;基于模糊聚類的協(xié)同過濾算法[J];計算機工程;2012年24期

相關(guān)博士學(xué)位論文 前1條

1 張賢坤;基于案例推理的應(yīng)急決策方法研究[D];天津大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 李瀚晨;基于“用戶—景點”關(guān)系建模的景點推薦技術(shù)的研究[D];北京工業(yè)大學(xué);2016年

2 張恒;個性化混合推薦算法在旅游中的應(yīng)用[D];華中師范大學(xué);2016年

3 李遠博;基于關(guān)聯(lián)規(guī)則算法的旅游推薦研究[D];陜西師范大學(xué);2015年

4 王建雨;旅游路由推薦技術(shù)的研究與實現(xiàn)[D];北京工業(yè)大學(xué);2015年

5 胡喬楠;基于旅游文記的旅游景點推薦及行程路線規(guī)劃系統(tǒng)[D];浙江大學(xué);2015年

6 朱媛;基于領(lǐng)域?qū)<叶群托湃味鹊碾娮咏】捣⻊?wù)個性化推薦方法研究與應(yīng)用[D];浙江財經(jīng)大學(xué);2015年

7 朱全;基于加權(quán)關(guān)聯(lián)規(guī)則挖掘的智慧旅游推薦系統(tǒng)的設(shè)計與實現(xiàn)[D];武漢科技大學(xué);2014年

8 王強;基于協(xié)同過濾算法的電子商務(wù)推薦系統(tǒng)研究[D];太原理工大學(xué);2013年

9 王桂芬;電子商務(wù)個性化推薦系統(tǒng)中協(xié)同過濾算法的研究與應(yīng)用[D];南昌大學(xué);2012年

10 吳春陽;數(shù)據(jù)挖掘在電子商務(wù)旅游線路推薦系統(tǒng)中的應(yīng)用研究[D];重慶交通大學(xué);2009年



本文編號:2493320

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/lvyoujiudianguanlilunwen/2493320.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ddb82***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com