區(qū)間猶豫模糊Bonferroni mean算子在多屬性決策中的應用
發(fā)布時間:2019-04-09 09:13
【摘要】:針對在信息集成時,需要考慮輸入變量之間的相互影響以及專家評價值為區(qū)間猶豫模糊信息的多屬性決策問題,提出一種基于區(qū)間猶豫模糊Bonferroni mean算子的多屬性決策方法。考慮到由于Bonferroni mean(BM)算子能夠良好的反映輸入變量之間相互影響,首次提出了評價值為區(qū)間猶豫模糊集信息環(huán)境下的兩種新的集成算子,即區(qū)間猶豫模糊Bonferroni mean(IVHFBM)算子和區(qū)間猶豫模糊幾何Bonferroni mean(IVHFGBM)算子。并討論了其相關的一些特性。同時基于輸入變量會具有不同重要程度的情況,定義了區(qū)間猶豫模糊加權Bonferroni mean(IVHFWBM)算子和區(qū)間猶豫模糊加權幾何Bonferroni mean(IVHFWGBM)算子。針對評價信息以區(qū)間猶豫模糊集表示的決策問題,提出了基于IVHFWBM算子和IVHFWGBM算子的多屬性決策方法。最后通過實例證明了該方法的可行性和有效性。
[Abstract]:A multi-attribute decision making method based on interval hesitation fuzzy Bonferroni mean operator is proposed to solve the multi-attribute decision making problem in which the interaction between input variables and the evaluation value of experts as interval hesitation fuzzy information are taken into account in information integration. Considering that the Bonferroni mean (BM) operator can well reflect the interaction between input variables, two new integration operators are proposed for the first time, in which the evaluation value is interval hesitant fuzzy set information environment. That is interval hesitation fuzzy Bonferroni mean (IVHFBM) operator and interval hesitation fuzzy geometric Bonferroni mean (IVHFGBM) operator. Some related properties are also discussed. At the same time, the interval hesitation fuzzy weighted Bonferroni mean (IVHFWBM) operator and interval hesitant fuzzy weighted geometric Bonferroni mean (IVHFWGBM) operator are defined based on the different importance of input variables. In this paper, a multi-attribute decision-making method based on IVHFWBM operator and IVHFWGBM operator is proposed for the decision-making problem in which the evaluation information is represented by interval hesitation fuzzy set. Finally, the feasibility and effectiveness of the method are proved by an example.
【作者單位】: 重慶科技學院工商管理學院;北京理工大學管理與經(jīng)濟學院;
【基金】:重慶社會規(guī)劃博士項目(2016BS087)
【分類號】:C934
[Abstract]:A multi-attribute decision making method based on interval hesitation fuzzy Bonferroni mean operator is proposed to solve the multi-attribute decision making problem in which the interaction between input variables and the evaluation value of experts as interval hesitation fuzzy information are taken into account in information integration. Considering that the Bonferroni mean (BM) operator can well reflect the interaction between input variables, two new integration operators are proposed for the first time, in which the evaluation value is interval hesitant fuzzy set information environment. That is interval hesitation fuzzy Bonferroni mean (IVHFBM) operator and interval hesitation fuzzy geometric Bonferroni mean (IVHFGBM) operator. Some related properties are also discussed. At the same time, the interval hesitation fuzzy weighted Bonferroni mean (IVHFWBM) operator and interval hesitant fuzzy weighted geometric Bonferroni mean (IVHFWGBM) operator are defined based on the different importance of input variables. In this paper, a multi-attribute decision-making method based on IVHFWBM operator and IVHFWGBM operator is proposed for the decision-making problem in which the evaluation information is represented by interval hesitation fuzzy set. Finally, the feasibility and effectiveness of the method are proved by an example.
【作者單位】: 重慶科技學院工商管理學院;北京理工大學管理與經(jīng)濟學院;
【基金】:重慶社會規(guī)劃博士項目(2016BS087)
【分類號】:C934
【相似文獻】
相關期刊論文 前10條
1 陳建蕓;;多屬性決策方法研究綜述[J];現(xiàn)代商業(yè);2010年30期
2 張小芝;朱傳喜;;多屬性決策的廣義等級偏好優(yōu)序法[J];系統(tǒng)工程理論與實踐;2013年11期
3 高峰記,,楊家榮,黃天學;多屬性決策的目標排序法[J];運籌與管理;1995年04期
4 白雪梅,趙松山;根據(jù)多屬性決策理論確定權數(shù)的方法[J];江蘇統(tǒng)計;1998年06期
5 徐澤水;多屬性決策的兩種方差最大化方法[J];管理工程學報;2001年02期
6 王中興,牟瓊,李橋興;多屬性決策的組合賦權法[J];應用數(shù)學與計算數(shù)學學報;2003年02期
7 張斌;集對分析與多屬性決策[J];農業(yè)系統(tǒng)科學與綜合研究;2004年02期
8 龍泉,雷亞萍;多屬性決策在素質評價中的應用[J];西安工業(yè)學院學報;2004年02期
9 王聰;黎放;徐一帆;;艦船裝備保障系統(tǒng)綜合評價的多屬性決策模型[J];科技進步與對策;2005年12期
10 安利平,陳增強,袁著祉;基于粗集理論的多屬性決策分析[J];控制與決策;2005年03期
相關會議論文 前10條
1 代e
本文編號:2455033
本文鏈接:http://sikaile.net/guanlilunwen/lindaojc/2455033.html