天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 貨幣論文 >

農(nóng)戶正規(guī)融資信用風險的度量研究

發(fā)布時間:2018-08-12 10:58
【摘要】:從2004年起,中共中央連續(xù)多年發(fā)布關于農(nóng)業(yè)、農(nóng)村問題的1號文件,表明黨和國家解決“三農(nóng)”問題的決心。金融機構在農(nóng)村金融市場的投入偏低,農(nóng)戶開展農(nóng)業(yè)產(chǎn)業(yè)化、現(xiàn)代化資金不足,是制約農(nóng)村建設、農(nóng)業(yè)發(fā)展、農(nóng)民增收的突出問題。要解決這一突出問題,主要依靠農(nóng)村金融的資金支持。然而,目前農(nóng)村金融市場面臨著許多突出問題:農(nóng)戶信用體系尚未建立起來,農(nóng)戶在信貸業(yè)務中由于擁有較多的信息而處于有利地位,導致農(nóng)戶道德風險和逆向選擇行為時有發(fā)生,金融機構開展農(nóng)戶信貸業(yè)務面臨較大的信用風險,不良貸款率居高不下,金融機構不愿進入農(nóng)村金融市場造成市場上供給主體偏低。因此,識別和管理農(nóng)戶信用風險就有十分重要的意義。但是目前我國金融機構對農(nóng)戶信用風險的度量和評價仍處于主觀性很強的古典信用定性的分析階段,主要依靠信貸員的工作經(jīng)驗,金融機構對農(nóng)戶信貸業(yè)務缺乏有效的信用風險控制手段。針對上述問題,本文以農(nóng)戶正規(guī)融資的信用風險為研究對象,,探索適合度量我國農(nóng)戶信用風險的模型或方法,降低農(nóng)戶違約風險,提高金融機構進入農(nóng)村市場、開展以農(nóng)戶為服務對象信貸業(yè)務的積極性。 本文首先通過回顧信用風險度量模型的發(fā)展歷程,重點介紹了四個信用風險度量模型,為度量農(nóng)戶正規(guī)融資信用風險度量提供了可以選擇的模型類型。其次對農(nóng)戶正規(guī)融資信用風險度量的起因進行了分析,農(nóng)戶有著旺盛且多元化的融資需求,但是金融機構開展農(nóng)戶信貸業(yè)務的運營成本較高,對農(nóng)戶信貸風險缺乏有效的控制手段,造成針對農(nóng)戶開展的信貸業(yè)務供給偏低,無法滿足農(nóng)戶日益增長的資金需求。再次,介紹了農(nóng)戶的信用風險有別于普通貸款的信用風險較高的原因,對農(nóng)戶正規(guī)融資信用風險的獨特性進行了具體的分析,指出我國農(nóng)戶信用風險度量現(xiàn)階段最可行的方法是多元統(tǒng)計分析方法。然后,在實地調(diào)研數(shù)據(jù)的基礎上對農(nóng)戶正規(guī)融資信用風險度量進行實證分析:將影響農(nóng)戶信用風險的指標設計為家庭人口特征、家庭財富擁有量、借貸因素三類25個指標,將這些指標分別輸入到判別分析模型和Logistic回歸分析模型中,得出如下結論:判別分析模型更傾向于選擇逐步判別分析模型,根據(jù)自變量對識別農(nóng)戶信用風險貢獻的大小,有欠款總額、土地質量、貸款年利率、過去12個月的農(nóng)業(yè)總支出、耕地面積、外出務工人數(shù)、農(nóng)業(yè)勞動力人數(shù)、資產(chǎn)價值、家庭規(guī)模、是否是小組擔保、農(nóng)戶聯(lián)保的成員、65歲以上老人數(shù)、是否是信用社成員、存款比例、過去12個月的消費總支出、12歲以下兒童人數(shù)、戶主受教育程度、信譽評價、過去12個月的外出務工收入18個變量依次進入模型,模型對農(nóng)戶正規(guī)融資信用風險的判斷的準確率為88.5%。Logistic回歸分析模型傾向于選擇使用向后逐步法,當Logistic回歸分析到第12步時對農(nóng)戶正規(guī)融資信用風險綜合識別的正確率為84.3%。通過實證分析可以看出,逐步判別分析模型在對農(nóng)戶信用風險識別和評價的準確率上高于Logistic回歸分析模型,逐步判別分析模型能夠成為金融機構控制農(nóng)戶信用風險的有效手段。最后,為了緩解農(nóng)村金融市場上的供需矛盾,為了使逐步判別分析模型作為農(nóng)戶正規(guī)融資信用風險控制的有效手段得以推廣,給出相應的政策建議。
[Abstract]:Since 2004, the Central Committee of the Communist Party of China has issued the No.1 document on agriculture and rural issues for many years, which shows the determination of the Party and the state to solve the "three rural" problem. However, the rural financial market is facing many outstanding problems: the peasant household credit system has not been established, the peasant household is in a favorable position because of having more information in the credit business, leading to the peasant household moral hazard and adverse selection behavior occurring from time to time. Financial institutions are facing great credit risks in developing peasant households'credit business, the rate of non-performing loans is high, and the reluctance of financial institutions to enter the rural financial market results in the low supply subject. Therefore, it is of great significance to identify and manage peasant households' credit risks. The evaluation is still in the stage of classical credit qualitative analysis with strong subjectivity, mainly relying on the work experience of the creditors, and the financial institutions lack effective means to control the credit risk of farmers'credit business. The model or method can reduce the default risk of peasant households, improve the enthusiasm of financial institutions to enter the rural market and develop credit business for peasant households.
Firstly, by reviewing the development of credit risk measurement model, this paper introduces four credit risk measurement models, which provide alternative models for measuring the credit risk of farmers'formal financing. However, the operation cost of farmers'credit business in financial institutions is high, and the credit risk of farmers is lack of effective control means. As a result, the supply of credit business for farmers is too low to meet the growing demand of farmers. Thirdly, the paper introduces the credit risk of farmers is different from that of ordinary loans. This paper analyzes the uniqueness of farmers'credit risk in formal financing and points out that the most feasible method to measure farmers' credit risk is multivariate statistical analysis. The risk indicators are designed as 25 indicators of household demographic characteristics, household wealth ownership, and lending factors. These indicators are input into the discriminant analysis model and the logistic regression analysis model respectively. The conclusion is that the discriminant analysis model is more inclined to choose the stepwise discriminant analysis model and identify the credit risk of farmers according to the independent variable pairs. Contribution size, total amount of arrears, land quality, annual interest rate of loans, total agricultural expenditure over the past 12 months, arable land area, number of migrant workers, number of agricultural labor force, asset value, family size, whether it is group guarantee, members of farmers'joint insurance, number of people over 65 years old, whether it is a member of credit cooperatives, deposit ratio, the past 12 months of consumption The total expenditure, the number of children under 12 years old, the educational level of the household head, and the credit rating of migrant workers in the past 12 months entered the model in turn. The accuracy of the model was 88.5%. Logistic regression analysis model tended to use backward stepwise method when Logistic regression analysis reached 1. Through the empirical analysis, it can be seen that the accuracy of the stepwise discriminant analysis model is higher than that of the logistic regression analysis model in identifying and evaluating farmers'credit risk. The stepwise discriminant analysis model can be an effective tool for financial institutions to control farmers' credit risk. Finally, in order to alleviate the contradiction between supply and demand in rural financial market, the corresponding policy suggestions are put forward in order to popularize the stepwise discriminant analysis model as an effective means to control the credit risk of farmers'formal financing.
【學位授予單位】:西北農(nóng)林科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:F832.35;F224

【參考文獻】

相關期刊論文 前10條

1 張德棟,張強;基于神經(jīng)網(wǎng)絡的企業(yè)信用評估模型[J];北京理工大學學報;2004年11期

2 李俊麗;;基于層次分析法的農(nóng)戶信用評估[J];商業(yè)研究;2009年10期

3 李正波;高杰;;農(nóng)戶信用社貸款的信用風險判別分析[J];山東工商學院學報;2007年01期

4 秦建國;呂忠偉;秦建群;;我國西部地區(qū)農(nóng)戶借貸行為影響因素的實證研究——基于804戶農(nóng)戶調(diào)查數(shù)據(jù)分析[J];財經(jīng)論叢;2011年03期

5 施錫銓,鄒新月;典型判別分析在企業(yè)信用風險評估中的應用[J];財經(jīng)研究;2001年10期

6 張玲,曾維火;基于Z值模型的我國上市公司信用評級研究[J];財經(jīng)研究;2004年06期

7 胡愈;許紅蓮;王雄;;農(nóng)戶小額信用貸款信用評級探究[J];財經(jīng)理論與實踐;2007年01期

8 王樹娟,霍學喜,何學松;農(nóng)村信用社農(nóng)戶信用綜合評價模型[J];財貿(mào)研究;2005年05期

9 周成;;運用CreditMetrics模型進行銀行貸款信用風險管理[J];當代經(jīng)濟(下半月);2007年09期

10 何樹紅;王善民;;基于變量雙重檢驗的Fisher信用風險度量模型[J];系統(tǒng)工程;2007年08期

相關碩士學位論文 前2條

1 周陽;我國中小企業(yè)信用風險度量研究[D];浙江大學;2006年

2 馬文勤;基于BP神經(jīng)網(wǎng)絡的農(nóng)戶小額信貸信用風險評估研究[D];西北農(nóng)林科技大學;2010年



本文編號:2178842

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/huobilw/2178842.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶43595***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲一区精品二人人爽久久| 欧美日韩精品视频在线| 国内精品偷拍视频久久| 日韩欧美一区二区久久婷婷| 日韩少妇人妻中文字幕| 亚洲一区二区三区在线免费| 男生和女生哪个更好色| 少妇高潮呻吟浪语91| 99久久免费中文字幕| 青青久久亚洲婷婷中文网| 欧美日韩中黄片免费看| 国产成人精品一区在线观看| 亚洲中文字幕高清乱码毛片| 久久国产精品热爱视频| 国产精品亚洲二区三区| 99精品人妻少妇一区二区人人妻| 国产主播精品福利午夜二区| 在线观看免费视频你懂的| 老司机激情五月天在线不卡| 日韩精品一区二区三区含羞含羞草| 中文字幕久久精品亚洲乱码| 午夜传媒视频免费在线观看| 国产日韩久久精品一区| 丰满人妻一二三区av| 夫妻性生活一级黄色录像| 久久香蕉综合网精品视频| 亚洲成人久久精品国产| 爱在午夜降临前在线观看| 日本午夜免费啪视频在线| 日韩高清中文字幕亚洲| 国产又粗又猛又爽色噜噜| 国产综合香蕉五月婷在线| 欧美日韩综合免费视频| 91午夜少妇极品福利| 亚洲一区二区三区福利视频| 国产女优视频一区二区| 日韩一级毛一欧美一级乱| 亚洲免费黄色高清在线观看| 欧美色婷婷综合狠狠爱| 老熟妇乱视频一区二区| 国产免费一区二区三区av大片|