天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 貨幣論文 >

分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下可換債券定價(jià)模型

發(fā)布時(shí)間:2018-03-11 06:28

  本文選題:分?jǐn)?shù)布朗運(yùn)動(dòng) 切入點(diǎn):可轉(zhuǎn)換債券 出處:《西安工程大學(xué)》2012年碩士論文 論文類型:學(xué)位論文


【摘要】:可轉(zhuǎn)換公司債券又稱可轉(zhuǎn)換債券,其本質(zhì)仍屬于債券故仍以債券的形式發(fā)行,所不同的是在發(fā)行之初,其所屬發(fā)行公司規(guī)定債券持有人可以自行選擇在債券到期當(dāng)日或之前的某一天按約定的轉(zhuǎn)換比率將其持有的債券轉(zhuǎn)換成發(fā)行公司的股票。它兼具債券和期權(quán)的特征,能夠?yàn)榘l(fā)行者和持有人創(chuàng)造雙贏利益,逐步成為一種新興金融衍生產(chǎn)品。分?jǐn)?shù)布朗運(yùn)動(dòng)因其具有相關(guān)性、長(zhǎng)程關(guān)聯(lián)性和自相似性,與人們對(duì)金融市場(chǎng)的現(xiàn)實(shí)感覺更為貼合,,逐步發(fā)展成一種主流的新型金融研究工具。 本文在分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境的金融市場(chǎng)模型下,對(duì)可轉(zhuǎn)換債券的價(jià)值構(gòu)成和定價(jià)公式進(jìn)行了研究。全文共分為八章。 第一章,主要介紹了可轉(zhuǎn)換債券的研究現(xiàn)狀、發(fā)展動(dòng)態(tài)、選題依據(jù)、研究意義,以及主要的研究?jī)?nèi)容。 第二章,介紹了分?jǐn)?shù)布朗運(yùn)動(dòng)的概念、性質(zhì),分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)積分相關(guān)定理,并對(duì)可轉(zhuǎn)換債券模型給出定義。 第三章,假定利率、波動(dòng)率、紅利率均為常數(shù)情況下建立股票價(jià)格過(guò)程服從幾何分?jǐn)?shù)布朗運(yùn)動(dòng)的金融市場(chǎng)數(shù)學(xué)模型,得到了分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下帶交易成本的可轉(zhuǎn)換債券的定價(jià)公式。 第四章,假定無(wú)風(fēng)險(xiǎn)利率、期望收益率、股票波動(dòng)率和紅利率均為時(shí)間的確性函數(shù)條件下,建立分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下的金融市場(chǎng)數(shù)學(xué)模型,利用分?jǐn)?shù)布朗隨機(jī)分析理論,得到了具有支付紅利的可轉(zhuǎn)換債券定價(jià)公式。 第五章,假定隨機(jī)利率滿足Vasicek模型下,建立股票價(jià)格服從幾何分?jǐn)?shù)布朗運(yùn)動(dòng)的金融市場(chǎng)數(shù)學(xué)模型,利用保險(xiǎn)精算方法,得到了隨機(jī)利率下具有支付紅利的可轉(zhuǎn)換債券的定價(jià)公式。 第六章,假定股票價(jià)格服從帶跳的分?jǐn)?shù)布朗運(yùn)動(dòng),利率滿足Vasicek模型,建立分?jǐn)?shù)跳-擴(kuò)散環(huán)境下金融市場(chǎng)數(shù)學(xué)模型,利用保險(xiǎn)精算方法和分?jǐn)?shù)布朗運(yùn)動(dòng)隨機(jī)分析理論,得到了隨機(jī)利率下具有支付紅利的可轉(zhuǎn)換債券的定價(jià)公式。 第七章,假定股票價(jià)格和企業(yè)資產(chǎn)價(jià)值均服從分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的隨機(jī)微分方程,利率為時(shí)間的確定性函數(shù),建立了分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下金融市場(chǎng)數(shù)學(xué)模型,利用保險(xiǎn)精算方法,得到了具有違約風(fēng)險(xiǎn)的可轉(zhuǎn)換債券定價(jià)公式。 第八章,總結(jié)了本文主要研究成果,并提出進(jìn)一步研究問(wèn)題。
[Abstract]:Convertible corporate bonds, also known as convertible bonds, are still bonds in nature, so they are still issued in the form of bonds. Its issuing company provides that bondholders may, at their own option, convert their holdings of bonds into shares of the issuing company at an agreed conversion rate on or before the date of maturity of the bonds. It has the characteristics of both bonds and options, It can create win-win benefits for issuers and holders, and gradually become an emerging financial derivative. Because of its relevance, long-term relevance and self-similarity, the fractional Brownian movement is more relevant to the reality of financial markets. Gradually developed into a mainstream new financial research tools. In this paper, the value composition and pricing formula of convertible bonds are studied under the financial market model of fractional Brownian motion environment. The whole paper is divided into eight chapters. The first chapter mainly introduces the research status, the development trend, the topic selection basis, the research significance and the main research content of convertible bonds. In the second chapter, we introduce the concept and properties of fractional Brownian motion, the stochastic integral correlation theorem of fractional Brownian motion, and give the definition of convertible bond model. In chapter 3, assuming that interest rate, volatility and red interest rate are all constant, a financial market mathematical model of stock price process using geometric fractional Brownian motion is established. The pricing formula of convertible bonds with transaction cost in fractional Brownian motion is obtained. In Chapter 4th, assuming that the risk-free interest rate, the expected rate of return, the stock volatility and the dividend rate are all time certainty functions, the financial market mathematical model under the fractional Brownian motion environment is established, and the fractional Brownian stochastic analysis theory is used. The pricing formula of convertible bonds with dividend payment is obtained. In Chapter 5th, assuming that the stochastic interest rate satisfies the Vasicek model, a financial market mathematical model of stock price with geometric fractional Brownian motion is established, and the actuarial method is used. The pricing formula of convertible bonds with dividend payment at random interest rate is obtained. In Chapter 6th, assuming that the stock price moves from fractional Brownian motion with jump, the interest rate satisfies the Vasicek model, the mathematical model of financial market in the environment of fractional hopping and diffusion is established, and the stochastic analysis theory of fractional Brownian motion is used by means of actuarial method and fractional Brownian motion. The pricing formula of convertible bonds with dividend payment at random interest rate is obtained. In Chapter 7th, assuming that both the stock price and the value of the firm's assets are governed by stochastic differential equations driven by fractional Brownian motion, and the interest rate is a deterministic function of time, a mathematical model of financial market in the environment of fractional Brownian motion is established. By means of actuarial method, a convertible bond pricing formula with default risk is obtained. Chapter 8th, summarized the main research results of this paper, and put forward further research problems.
【學(xué)位授予單位】:西安工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F830.91;O211.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曹龍;;收益率穩(wěn)定分布下的可轉(zhuǎn)換債券定價(jià)模型[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期

2 曹龍;王凱;;隨機(jī)利率條件下可轉(zhuǎn)換債券定價(jià)模型研究——基于遠(yuǎn)期風(fēng)險(xiǎn)中性概率方法[J];安徽農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2008年04期

3 張德華,陶融;布萊克-斯科爾斯期權(quán)定價(jià)模型在可轉(zhuǎn)換債券定價(jià)中的應(yīng)用[J];財(cái)經(jīng)理論與實(shí)踐;1999年06期

4 孟衛(wèi)東,漆曉均,王蕾;可轉(zhuǎn)換債券轉(zhuǎn)換比率模型[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年08期

5 李蕊;;隨機(jī)利率和跳-擴(kuò)散過(guò)程下具有隨機(jī)壽命的未定權(quán)益定價(jià)[J];蘭州理工大學(xué)學(xué)報(bào);2011年04期

6 麥強(qiáng);胡運(yùn)權(quán);;基于信用風(fēng)險(xiǎn)模型的可轉(zhuǎn)換債券定價(jià)研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2006年03期

7 于萍;孔繁亮;;鞅分析在周期紅利下n-因子可轉(zhuǎn)換債券定價(jià)中的應(yīng)用[J];哈爾濱理工大學(xué)學(xué)報(bào);2008年02期

8 李軍;薛紅;李艷偉;;分?jǐn)?shù)跳-擴(kuò)散過(guò)程下可轉(zhuǎn)換債券定價(jià)[J];佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期

9 陳學(xué)軍;;考慮違約風(fēng)險(xiǎn)的可轉(zhuǎn)換債券定價(jià)新模型[J];價(jià)值工程;2007年06期

10 周其源;吳沖鋒;劉海龍;;有信用風(fēng)險(xiǎn)的可贖回可轉(zhuǎn)換貼現(xiàn)債券完全拆解定價(jià)法[J];上海交通大學(xué)學(xué)報(bào);2008年09期



本文編號(hào):1596971

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/huobilw/1596971.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶abc7d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com