分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下后定選擇權(quán)定價(jià)模型研究
本文關(guān)鍵詞: 分?jǐn)?shù)布朗運(yùn)動(dòng) Orenstein-Uhlenback過程 后定選擇權(quán) 分?jǐn)?shù)跳-擴(kuò)散過程 保險(xiǎn)精算方法 出處:《西安工程大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:期權(quán)定價(jià)理論是金融數(shù)學(xué)研究的核心問題之一。1973年Black和Scholes假設(shè)股票價(jià)格在幾何布朗運(yùn)動(dòng)環(huán)境下,提出了著名的Black-Scholes期權(quán)定價(jià)模型,并給出了其定價(jià)公式。然而,在實(shí)際的金融市場(chǎng)模型中用分?jǐn)?shù)布朗運(yùn)動(dòng)取代標(biāo)準(zhǔn)布朗運(yùn)動(dòng)早已被眾多學(xué)者認(rèn)同,主要是由于分?jǐn)?shù)布朗運(yùn)動(dòng)具有較好地“厚尾”和長(zhǎng)程依賴性。 本文假設(shè)股票價(jià)格滿足分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的隨機(jī)微分方程,建立分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境下的金融市場(chǎng),利用分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)理論和保險(xiǎn)精算方法,研究后定選擇權(quán)定價(jià)問題。全文共分六章。 第一章,介紹期權(quán)定價(jià)理論的歷史及研究現(xiàn)狀、選題依據(jù)以及研究的主要內(nèi)容。 第二章,介紹分?jǐn)?shù)布朗運(yùn)動(dòng)的定義及其性質(zhì),,同時(shí)介紹分?jǐn)?shù)布朗運(yùn)動(dòng)隨機(jī)分析理論及歐式期權(quán)的保險(xiǎn)精算方法。 第三章,假設(shè)股票價(jià)格滿足分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的隨機(jī)微分方程,利率滿足Hull-White模型,利用分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)分析理論及保險(xiǎn)精算方法研究了后定選擇權(quán)的定價(jià)問題,并得到了后定選擇權(quán)定價(jià)公式。 第四章,建立分?jǐn)?shù)跳-擴(kuò)散Orenstein-Uhlenback過程下的金融市場(chǎng)模型,利用分?jǐn)?shù)跳-擴(kuò)散過程理論及保險(xiǎn)精算方法,討論了后定選擇權(quán)定價(jià)問題,獲得了后定選擇權(quán)定價(jià)公式。 第五章,建立混合分?jǐn)?shù)跳-擴(kuò)散環(huán)境下的金融市場(chǎng)模型,利用保險(xiǎn)精算方法和分?jǐn)?shù)跳-擴(kuò)散過程理論,得到了歐式期權(quán)和后定選擇權(quán)的定價(jià)公式。 第六章,總結(jié)本文所研究的主要結(jié)果,并提出還需進(jìn)一步研究的問題。
[Abstract]:Option pricing theory is one of the core problems in financial mathematics. In 1973, Black and Scholes assumed that the stock price is in the geometric Brownian motion environment. In this paper, a famous Black-Scholes option pricing model is proposed and its pricing formula is given. Replacing standard Brownian motion with fractional Brownian motion in actual financial market model has been recognized by many scholars, mainly because fractional Brownian motion has a good "thick tail" and long range dependence. This paper assumes that the stock price satisfies the stochastic differential equation driven by the fractional Brownian motion and establishes the financial market under the fractional Brownian motion environment. The stochastic theory of the fractional Brownian motion and the actuarial method are used. The thesis is divided into six chapters. The first chapter introduces the history and research status of option pricing theory. In the second chapter, the definition and properties of fractional Brownian motion are introduced, and the stochastic analysis theory of fractional Brownian motion and the actuarial method of European option are also introduced. In chapter 3, we assume that the stock price satisfies the stochastic differential equation driven by fractional Brownian motion, and the interest rate satisfies the Hull-White model. By using the stochastic analysis theory of fractional Brownian motion and the actuarial method, the pricing problem of postdeterminate option is studied, and the pricing formula of postdeterminate option is obtained. In chapter 4th, the financial market model of fractional hop-diffusion Orenstein-Uhlenback process is established, and the theory of fractional hop-diffusion process and the actuarial method of insurance are used. In this paper, we discuss the pricing problem of postdeterminate option, and obtain the pricing formula of postdeterminate option. In Chapter 5th, the financial market model under mixed fractional hopping and diffusion environment is established, and the pricing formulas of European option and postdeterminate option are obtained by using the actuarial method and the theory of fractional hop-diffusion process. Chapter 6th summarizes the main results of this paper and points out the problems that need further study.
【學(xué)位授予單位】:西安工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:O211.6;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛紅;外匯期權(quán)的多維Black-Scholes模型[J];工程數(shù)學(xué)學(xué)報(bào);2002年02期
2 閆海峰,劉三陽(yáng);帶有Poisson跳的股票價(jià)格模型的期權(quán)定價(jià)[J];工程數(shù)學(xué)學(xué)報(bào);2003年02期
3 薛紅;隨機(jī)利率情形下的多維Black-Scholes模型[J];工程數(shù)學(xué)學(xué)報(bào);2005年04期
4 薛紅;王拉省;;分?jǐn)?shù)布朗運(yùn)動(dòng)環(huán)境中最值期權(quán)定價(jià)[J];工程數(shù)學(xué)學(xué)報(bào);2008年05期
5 畢學(xué)慧;杜雪樵;;后定選擇權(quán)的保險(xiǎn)精算定價(jià)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期
6 彭勃;杜雪樵;;支付紅利股票的跳擴(kuò)散過程下期權(quán)定價(jià)的鞅方法[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年11期
7 張娟;金治明;;隨機(jī)利率下期權(quán)定價(jià)[J];經(jīng)濟(jì)數(shù)學(xué);2006年03期
8 肖艷清;鄒捷中;;分?jǐn)?shù)隨機(jī)利率模型中的期權(quán)定價(jià)[J];經(jīng)濟(jì)數(shù)學(xué);2009年01期
9 孫玉東;薛紅;;分?jǐn)?shù)跳-擴(kuò)散環(huán)境下歐式期權(quán)定價(jià)的Ornstein-Uhlenbeck模型[J];經(jīng)濟(jì)數(shù)學(xué);2009年03期
10 徐峰;鄭石秋;;混合分?jǐn)?shù)布朗運(yùn)動(dòng)驅(qū)動(dòng)的冪期權(quán)定價(jià)模型[J];經(jīng)濟(jì)數(shù)學(xué);2010年02期
相關(guān)博士學(xué)位論文 前1條
1 劉韶躍;數(shù)學(xué)金融的分?jǐn)?shù)次Black-Scholes模型及應(yīng)用[D];湖南師范大學(xué);2004年
本文編號(hào):1454803
本文鏈接:http://sikaile.net/guanlilunwen/huobilw/1454803.html