模糊統(tǒng)計(jì)決策理論基礎(chǔ)上的大型工程項(xiàng)目風(fēng)險(xiǎn)評(píng)估方法研究
本文關(guān)鍵詞:模糊統(tǒng)計(jì)決策理論基礎(chǔ)上的大型工程項(xiàng)目風(fēng)險(xiǎn)評(píng)估方法研究,由筆耕文化傳播整理發(fā)布。
隨著社會(huì)經(jīng)濟(jì)長(zhǎng)期快速發(fā)展,地球在為人類(lèi)提供了生命必須的糧食、水和必要的能源和礦產(chǎn)資源的同時(shí),也給人類(lèi)帶來(lái)了很多自然災(zāi)難,諸如火山、地震、海嘯等。人類(lèi)面臨日益突出的環(huán)境、資源、能源等問(wèn)題,這不僅是人類(lèi)探求自然奧秘經(jīng)過(guò)的歷程,更是人類(lèi)向大自然獲取能源、資源同時(shí)為保障自身安全做出努力的過(guò)程,因此急需發(fā)展深部探測(cè)及其相關(guān)技術(shù),以支撐解決以上方面遇到的各種問(wèn)題。近百年來(lái),各國(guó)的地球物理學(xué)家、地質(zhì)學(xué)家進(jìn)行著不懈的努力對(duì)其不斷探索。我國(guó)科學(xué)家也意識(shí)到必須開(kāi)展中國(guó)地球深部探測(cè)計(jì)劃,才能解決所面臨的重大資源環(huán)境問(wèn)題全面實(shí)現(xiàn)地球科學(xué)的創(chuàng)新與發(fā)展。然而全世界地球科學(xué)家不得不面對(duì)一個(gè)事實(shí)就是:人類(lèi)對(duì)自身賴(lài)以生存的地球內(nèi)部結(jié)構(gòu)了解太少,目前我們的直接鉆探僅達(dá)到12km,與龐大的地球體系相比,所涉及的只是地球的表面結(jié)構(gòu)。在一直以來(lái)的研究中,研究人員漸漸發(fā)現(xiàn)一個(gè)不爭(zhēng)的事實(shí):可謂上天不易,入地更難。所謂“入地”就是通過(guò)深部探測(cè)工程,了解地下物質(zhì)、結(jié)構(gòu)的過(guò)程。而以上所要解決的問(wèn)題都將依賴(lài)于深部探測(cè)手段——大陸深部科學(xué)鉆探工程。大陸深部科學(xué)鉆探工程不僅僅是一個(gè)名詞,更不單純是一個(gè)簡(jiǎn)單的工程,它是現(xiàn)代地球科學(xué)研究領(lǐng)域中不可或缺的重要工具,它能夠提供隨著深度的增加直接獲得信息,同時(shí)無(wú)疑也是驗(yàn)證地球物理研究成果和結(jié)果正確性的可靠手段。我國(guó)超深科學(xué)鉆探設(shè)計(jì)萬(wàn)米深度,將面臨一系列挑戰(zhàn)。隨著深度的增加,溫度、壓力等環(huán)境因素也在不斷變化,設(shè)備的安全性以及鉆探過(guò)程中事故發(fā)生的概率也隨之大大增加,對(duì)風(fēng)險(xiǎn)的預(yù)測(cè)和防范增加了難度。實(shí)際大陸深部科學(xué)鉆探工程的實(shí)施可以作為實(shí)驗(yàn)室研究成果的驗(yàn)證手段,同時(shí)對(duì)于探索地球奧秘、改進(jìn)研究起著關(guān)鍵性作用,同時(shí)也扮演著極其重要的角色,與社會(huì)能源經(jīng)濟(jì)有著緊密的聯(lián)系。其中隨鉆設(shè)計(jì)的動(dòng)態(tài)實(shí)時(shí)量化風(fēng)險(xiǎn)評(píng)估針對(duì)這項(xiàng)工作展開(kāi),能夠直接在人力物力財(cái)力上減少大量不必要的損失,降低大陸深部科學(xué)鉆探的整體風(fēng)險(xiǎn),因此,啟動(dòng)該項(xiàng)研究具有現(xiàn)實(shí)意義。然而,現(xiàn)有的風(fēng)險(xiǎn)評(píng)估方法滿足不了大陸科學(xué)深部鉆探的需要。原因是:(1)信息來(lái)源單一,目前進(jìn)行項(xiàng)目風(fēng)險(xiǎn)評(píng)估的信息源往往是專(zhuān)家系統(tǒng)的經(jīng)驗(yàn)和單一手段獲得的數(shù)據(jù),在有經(jīng)驗(yàn)可循的項(xiàng)目或事件中,專(zhuān)家的經(jīng)驗(yàn)可以作為判斷的依據(jù),遇到無(wú)經(jīng)驗(yàn)可以參照或者經(jīng)驗(yàn)很少的情況下,這種方法就會(huì)變成一種相對(duì)主觀的判斷,很多問(wèn)題會(huì)由于主觀經(jīng)驗(yàn)不足,引起判斷上的失誤;(2)在對(duì)風(fēng)險(xiǎn)評(píng)估整體評(píng)價(jià)維度上,以往的方法是簡(jiǎn)單地將風(fēng)險(xiǎn)發(fā)生的概率與事后影響相乘,這樣雖然能夠評(píng)價(jià)出風(fēng)險(xiǎn)的大小,但是得到結(jié)果是寬泛、粗線條的,有時(shí)甚至可能會(huì)遺漏一些風(fēng)險(xiǎn),或者把一些并不重要的風(fēng)險(xiǎn)歸入其中,這樣會(huì)對(duì)進(jìn)一步的工作帶來(lái)干擾。(3)現(xiàn)有風(fēng)險(xiǎn)評(píng)估的方法大部分是靜態(tài)的,雖然近年來(lái)風(fēng)險(xiǎn)評(píng)估會(huì)應(yīng)用在石油勘探企業(yè)的管理中,但絕大多數(shù)解決的是事前關(guān)于項(xiàng)目預(yù)算和時(shí)間估計(jì)與預(yù)先評(píng)定方面的應(yīng)用,對(duì)于大型工程項(xiàng)目,只做這些方面的風(fēng)險(xiǎn)評(píng)估是遠(yuǎn)達(dá)不到要求,加強(qiáng)動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估是解決問(wèn)題的重要途徑,因此,針對(duì)具體問(wèn)題發(fā)展一套行之有效的解決方案尤為必要。隨著深部鉆探技術(shù)的不斷改進(jìn),獲取數(shù)據(jù)信息的手段也不斷增加,如何將獲得的海量數(shù)據(jù)有效利用,是獲得優(yōu)質(zhì)風(fēng)險(xiǎn)評(píng)估結(jié)果的前提,這就涉及在數(shù)據(jù)處理階段用有效的方法將得到的信息進(jìn)行多尺度多源信息融合。這些數(shù)據(jù)主要來(lái)自于重力勘探、磁法測(cè)量、電法測(cè)量、地震手段、隨鉆測(cè)井等信息手段。這些信息具有以下特點(diǎn):多類(lèi)型、多尺度、多時(shí)態(tài),同時(shí)數(shù)據(jù)量龐大數(shù)據(jù)結(jié)構(gòu)復(fù)雜,但是如果恰當(dāng)運(yùn)用,這些數(shù)據(jù)信息之間將能相互配合彌補(bǔ)、彼此之間的不足,從不同角度反映相同地質(zhì)體特征。除了以上客觀數(shù)據(jù)信息外,我們還有專(zhuān)家系統(tǒng),這也是一個(gè)巨大的信息來(lái)源。另外,在深部探測(cè)過(guò)程中進(jìn)行實(shí)時(shí)風(fēng)險(xiǎn)評(píng)估可以解決鉆進(jìn)過(guò)程中客觀條件不斷變化帶來(lái)的問(wèn)題,例如:壓力、溫度以及地質(zhì)巖層結(jié)構(gòu),直接導(dǎo)致風(fēng)險(xiǎn)因素也會(huì)隨之發(fā)生變化,風(fēng)險(xiǎn)發(fā)生的可能性也會(huì)發(fā)生變化,這就需要在鉆探過(guò)程中對(duì)風(fēng)險(xiǎn)因素進(jìn)行實(shí)時(shí)更新與識(shí)別,隨時(shí)監(jiān)控鉆探各項(xiàng)風(fēng)險(xiǎn)發(fā)生可能性的大小,以便及時(shí)采取防范措施。因此,針對(duì)數(shù)據(jù)特點(diǎn)發(fā)展一套行之有效的融合技術(shù)需要進(jìn)行跨學(xué)科技術(shù)融合和針對(duì)性攻關(guān)研究。綜上所述,深部探測(cè)所提供的參數(shù)特點(diǎn)具有諸多不確定性,運(yùn)用結(jié)合針對(duì)對(duì)比開(kāi)發(fā)建立在統(tǒng)計(jì)基礎(chǔ)上的風(fēng)險(xiǎn)評(píng)估數(shù)學(xué)模型,可以解決在該行業(yè)中未解決的問(wèn)題,因此,對(duì)超深鉆探進(jìn)行隨鉆實(shí)時(shí)風(fēng)險(xiǎn)評(píng)估方法的研究具有理論意義和應(yīng)用價(jià)值。針對(duì)大陸超深科學(xué)鉆探過(guò)程中不確定性風(fēng)險(xiǎn)預(yù)測(cè)和防范問(wèn)題所設(shè)定的研究目標(biāo),提出一套基于多尺度多源信息融合的動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法,同時(shí)建立多指標(biāo)風(fēng)險(xiǎn)綜合評(píng)價(jià)體系,通過(guò)利用隨鉆測(cè)量數(shù)據(jù)實(shí)時(shí)更新和完善評(píng)估手段,修正評(píng)估參數(shù),實(shí)現(xiàn)鉆進(jìn)過(guò)程中及時(shí)發(fā)現(xiàn)風(fēng)險(xiǎn)、規(guī)避風(fēng)險(xiǎn)和降低風(fēng)險(xiǎn)的應(yīng)用目標(biāo)。本文的研究?jī)?nèi)容:主要分析如何充分考慮大陸深部鉆探工程的特點(diǎn),針對(duì)深部鉆探隨鉆過(guò)程缺乏有效實(shí)時(shí)評(píng)估鉆進(jìn)風(fēng)險(xiǎn)的方法和技術(shù)等問(wèn)題,尤其是超深鉆探過(guò)程對(duì)此需求更為迫切,本項(xiàng)目將基于實(shí)際參數(shù)的多尺度多源信息特性,以及在隨鉆過(guò)程中數(shù)據(jù)實(shí)時(shí)、遞歸的特點(diǎn),研究隨鉆深度動(dòng)態(tài)參數(shù)融合的風(fēng)險(xiǎn)評(píng)估方法,對(duì)鉆進(jìn)過(guò)程中可能出現(xiàn)的隨機(jī)風(fēng)險(xiǎn)作出預(yù)測(cè),提高實(shí)時(shí)風(fēng)險(xiǎn)評(píng)估的準(zhǔn)確性,并在復(fù)雜的工程實(shí)踐中得到加強(qiáng)和完善。由此,本論文形成了一個(gè)邏輯比較合理的研究框架,在此框架下本論文系統(tǒng)地研究了風(fēng)險(xiǎn)評(píng)估方法的相關(guān)問(wèn)題。從研究工作流程上可分為以下7個(gè)章節(jié):第一章:摘要。主要介紹本論文的研究背景以及研究的目的和意義。第二章:研究綜述。將論文中涉及的兩大概念給出定義與性質(zhì)的描述,同時(shí)對(duì)國(guó)內(nèi)外的研究現(xiàn)狀進(jìn)行綜述。第三章:論文的核心章節(jié)之一,屬于靜態(tài)風(fēng)險(xiǎn)評(píng)估方法的研究部分。在這一章中主要目的是對(duì)各個(gè)因素進(jìn)行風(fēng)險(xiǎn)評(píng)估從而進(jìn)行風(fēng)險(xiǎn)排序,根據(jù)以往研究的經(jīng)驗(yàn)總結(jié)出不足之處,提出一種新的4維度評(píng)價(jià)標(biāo)準(zhǔn),這4個(gè)評(píng)價(jià)標(biāo)準(zhǔn)分別是:風(fēng)險(xiǎn)發(fā)生的概率、風(fēng)險(xiǎn)嚴(yán)重性、不可預(yù)知性和惡化后果嚴(yán)重性,這4種維度的評(píng)價(jià)標(biāo)準(zhǔn),能夠更加適合本項(xiàng)目的特點(diǎn)進(jìn)行風(fēng)險(xiǎn)評(píng)價(jià),以期達(dá)到在項(xiàng)目施工前期更加貼近實(shí)際風(fēng)險(xiǎn)發(fā)生情況概率的預(yù)測(cè),給項(xiàng)目實(shí)施方以一個(gè)量化的標(biāo)準(zhǔn)來(lái)看待將要執(zhí)行的項(xiàng)目,首先是會(huì)在哪些方面遇到風(fēng)險(xiǎn),這些可能發(fā)生的風(fēng)險(xiǎn)的大小是怎樣的,使之能更加直觀明朗。第四章:論文的另一核心章節(jié),也屬于靜態(tài)風(fēng)險(xiǎn)評(píng)估方法的研究部分。在這一章中主要目的是對(duì)項(xiàng)目整體風(fēng)險(xiǎn)進(jìn)行風(fēng)險(xiǎn)評(píng)估,應(yīng)用了集成的解釋結(jié)構(gòu)模型(ISM)和網(wǎng)絡(luò)分析法(ANP)對(duì)其進(jìn)行評(píng)估。第五章:論文的又一核心章節(jié),動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法研究部分。這項(xiàng)研究的主要目的是根據(jù)項(xiàng)目實(shí)施的具體特點(diǎn)提出的,本項(xiàng)目的特點(diǎn)是:有很多因素會(huì)在鉆探過(guò)程中發(fā)生變化,而這些因素的變化在施工前期是無(wú)法準(zhǔn)確得到的,也就是說(shuō)在施工前期所得到的情況并非準(zhǔn)確信息,這樣就加大了項(xiàng)目實(shí)施過(guò)程中的風(fēng)險(xiǎn)。另外,還有一些影響因素是隨著鉆進(jìn)的加深而不斷變化,我們?cè)谑┕で捌谥荒苤肋@影響因素的大概變化趨勢(shì),這樣在很大程度上也加大了施工的風(fēng)險(xiǎn)。同時(shí)需要明確的是,由于本項(xiàng)目的特殊性,如果在本文中所提出的風(fēng)險(xiǎn)發(fā)生,帶來(lái)的將是十分嚴(yán)重的后果,這樣就需要我們?cè)陧?xiàng)目施工過(guò)程中,不斷增強(qiáng)風(fēng)險(xiǎn)預(yù)測(cè)概率的準(zhǔn)確性,以期能夠提前給項(xiàng)目實(shí)施人員以預(yù)警,盡量做到防患于未然的目的。第六章:案例研究。將以上三個(gè)核心章節(jié)中的方法應(yīng)用到大陸科學(xué)深部鉆探工程中,運(yùn)用在項(xiàng)目中實(shí)際得到的數(shù)據(jù)對(duì)以上方法進(jìn)行驗(yàn)證,一方面是能夠?qū)ι鲜龉こ添?xiàng)目的風(fēng)險(xiǎn)有一個(gè)全面量化的結(jié)果,另外方面也是驗(yàn)證所提出方法的正確性和可行性。第七章:對(duì)全文的總結(jié)和展望,在這一章中提出了本研究的不足之處以及未來(lái)的研究方向。通過(guò)大量國(guó)內(nèi)外文獻(xiàn)的閱讀以及調(diào)研,發(fā)現(xiàn)了下面7個(gè)在風(fēng)險(xiǎn)評(píng)估中的具體問(wèn)題,因此本論文圍繞大型工程的風(fēng)險(xiǎn)評(píng)估方法進(jìn)行研究,就發(fā)現(xiàn)的問(wèn)題展開(kāi)探討:(1)如何確定評(píng)語(yǔ)集中每個(gè)權(quán)重的合理性;(2)如何確定每個(gè)風(fēng)險(xiǎn)的相對(duì)重要性;(3)現(xiàn)有的評(píng)價(jià)方法并不完善,如何使其能夠更加完善,評(píng)價(jià)結(jié)果能夠更加合理并且不遺漏或增加風(fēng)險(xiǎn);(4)如何更加準(zhǔn)確地對(duì)各個(gè)風(fēng)險(xiǎn)因素進(jìn)行排序;(5)如何對(duì)項(xiàng)目整體風(fēng)險(xiǎn)指數(shù)予以較客觀的評(píng)價(jià);(6)在動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估中獲得的海量數(shù)據(jù),如何將其進(jìn)行有效的數(shù)據(jù)過(guò)濾;(7)如何有效地對(duì)動(dòng)態(tài)過(guò)程進(jìn)行監(jiān)控的問(wèn)題。針對(duì)以上提出的問(wèn)題,就現(xiàn)有研究中很少涉及動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法這一不足提出解決方案、針對(duì)靜態(tài)風(fēng)險(xiǎn)評(píng)估中對(duì)每個(gè)風(fēng)險(xiǎn)因素進(jìn)行評(píng)價(jià)的維度進(jìn)行了改進(jìn),就此,本文在改進(jìn)措施、調(diào)整方案、集成處理手段、處理流程思路、處理技巧等方面提出了以下的創(chuàng)新和改進(jìn)之處:(1)用層次分析法和網(wǎng)絡(luò)分析法來(lái)確定每個(gè)的權(quán)重的合理性。(2)用ANP方法確定每個(gè)風(fēng)險(xiǎn)的相對(duì)重要性。(3)在模糊綜合評(píng)價(jià)法中提出一種新的四維度評(píng)價(jià)方法。(4)用ISM方法是用來(lái)識(shí)別風(fēng)險(xiǎn)之間的相互依存關(guān)系。進(jìn)行基于模糊綜合評(píng)價(jià)法的項(xiàng)目風(fēng)險(xiǎn)因素評(píng)估方法的研究。從預(yù)備階段的識(shí)別風(fēng)險(xiǎn)因素開(kāi)始,然后進(jìn)行評(píng)語(yǔ)集的建立和評(píng)價(jià)標(biāo)準(zhǔn)的建立,然后確定每個(gè)風(fēng)險(xiǎn)指標(biāo)的權(quán)重,建立模糊評(píng)價(jià)矩陣,最后計(jì)算出風(fēng)險(xiǎn)因素的風(fēng)險(xiǎn)指數(shù)。(5)針對(duì)風(fēng)險(xiǎn)的重要性排序問(wèn)題提出一種整合了ISM和ANP的方法;诩傻腎SM和ANP方法的項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估方法研究,將ISM和ANP方法有效集成最后計(jì)算出項(xiàng)目的整體風(fēng)險(xiǎn)指數(shù)。(6)以Kalman濾波為基礎(chǔ),提出一種擴(kuò)展的Kalman濾波方法對(duì)多尺度海量數(shù)據(jù)進(jìn)行過(guò)濾。(7)在研究動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法是,結(jié)合實(shí)際特點(diǎn),提出基于多尺度信息融合的動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法模型。針對(duì)在動(dòng)態(tài)過(guò)程中所采集數(shù)據(jù)的特點(diǎn),進(jìn)行動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法上的研究,從數(shù)據(jù)過(guò)濾到算法再到模型的逐步推進(jìn),最終得到在動(dòng)態(tài)過(guò)程中對(duì)風(fēng)險(xiǎn)的評(píng)估結(jié)果。(8)將本論文的所有創(chuàng)新研究方法應(yīng)用在SinoProbe大陸深部科學(xué)鉆探項(xiàng)目中,以驗(yàn)證其可行性得到評(píng)價(jià)結(jié)果。對(duì)于靜態(tài)風(fēng)險(xiǎn)評(píng)估方法研究的研究思路和技術(shù)路線包括以下幾個(gè)方面:(1)利用模糊綜合評(píng)價(jià)法對(duì)項(xiàng)目風(fēng)險(xiǎn)因素進(jìn)行評(píng)估從預(yù)備階段的識(shí)別風(fēng)險(xiǎn)因素開(kāi)始,然后進(jìn)行評(píng)語(yǔ)集的建立和評(píng)價(jià)標(biāo)準(zhǔn)的建立,然后確定每個(gè)風(fēng)險(xiǎn)指標(biāo)的權(quán)重,建立模糊評(píng)價(jià)矩陣,最后計(jì)算出風(fēng)險(xiǎn)因素的風(fēng)險(xiǎn)指數(shù)。(2)集成解釋結(jié)構(gòu)模型(ISM)和網(wǎng)絡(luò)分析法(ANP)進(jìn)行項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估將ISM和ANP方法有效集成以計(jì)算出項(xiàng)目的整體風(fēng)險(xiǎn)指數(shù)。首先確定每個(gè)風(fēng)險(xiǎn)的相互依賴(lài)程度的大小,構(gòu)建可達(dá)矩陣,隨后建立有向圖并形成解釋結(jié)構(gòu)模型,接下來(lái)應(yīng)用ANP構(gòu)建網(wǎng)絡(luò)結(jié)構(gòu)形成超矩陣,在超矩陣的基礎(chǔ)上構(gòu)建聚類(lèi)矩陣和加權(quán)超級(jí)矩陣,最終得到項(xiàng)目整體風(fēng)險(xiǎn)大小的評(píng)價(jià)。對(duì)于動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法研究的研究思路和技術(shù)路線包括以下幾個(gè)方面:(1)多源信息數(shù)據(jù)過(guò)濾問(wèn)題本項(xiàng)目中獲得數(shù)據(jù)是多元化的,獲得手段包括:重力測(cè)量、磁力測(cè)量、電法測(cè)量、地震測(cè)量以及在鉆井過(guò)程中的測(cè)井以及錄井的數(shù)據(jù),針對(duì)某一風(fēng)險(xiǎn)因素,不是所有的數(shù)據(jù)信息都可以利用得上,有時(shí)雖然幾個(gè)測(cè)量指標(biāo)都能夠指征同一個(gè)地質(zhì)特征,但是測(cè)量精度、表征的準(zhǔn)確度卻不盡相同,如何有效利用這些數(shù)據(jù)信息,將不必要的冗余信息剔除做到數(shù)據(jù)過(guò)濾。本文中所指的多傳感器概念和以往的并非完全相同,在這里是廣義的多傳感器的概念,將多種獲取數(shù)據(jù)的手段看成是多傳感器的目標(biāo)。引入多尺度Kalman濾波的概念,由于其有實(shí)時(shí)性和遞歸性以及融合性的特點(diǎn)適應(yīng)于我們應(yīng)用領(lǐng)域,建立多傳感器的多尺度算法,這是研究的內(nèi)容之一。(2)動(dòng)態(tài)過(guò)程多尺度信息融合表示方法和建模。建立動(dòng)態(tài)過(guò)程的信息融合表示方法和建模方法,隨后應(yīng)用這一方法進(jìn)行動(dòng)態(tài)過(guò)程的過(guò)程監(jiān)控以最終得到對(duì)于動(dòng)態(tài)過(guò)程風(fēng)險(xiǎn)評(píng)估的目的。三、四、五、六章是文章的核心章節(jié),提出評(píng)價(jià)標(biāo)準(zhǔn),另一個(gè)是建立動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估模型,并在實(shí)際項(xiàng)目中進(jìn)行驗(yàn)證。以上的研究成果包括:靜態(tài)風(fēng)險(xiǎn)評(píng)估方法的研究和動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法的研究,在研究過(guò)程中針對(duì)動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估的過(guò)程,由于工作量比較大,沒(méi)有對(duì)項(xiàng)目所涉及的所有主要風(fēng)險(xiǎn)進(jìn)行動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估驗(yàn)證,這是本文的不足之處。同時(shí)在今后的研究中,由于本項(xiàng)目的特點(diǎn),涉及的數(shù)據(jù)是多尺度、大數(shù)據(jù)量的,在數(shù)據(jù)處理方面需要進(jìn)行更進(jìn)一步的優(yōu)化,這是可以開(kāi)展進(jìn)一步研究的地方。
With the sustainable quick development of Chinese economy, the Earthserves us with food, water, and energy sources. However, it bringsdisaster, such as volcano, earthquake, Tsunami as well. Problems we faced,of environment, resource and energy, they are not only the process ofseeking the secrecy of nature, but also the effort of obtaining theresource and energy. Therefore, we need solve them by developing deepexploration technology.Geologists and geophysics are making every effort in recent100years.Scientists in China realized that to solve the problems we have to carryout the program of deep exploration, to achieve the innovation anddevelopment of geosciences. However, geoscientists from all over theworld have to face the fact that we know little about the inner structureof the world. The deepest drilling until now is12km, which is just thesurface layer of the Earth comparing with the whole geological system.During the researches, scientists realized that it was much more difficultfor getting into the earth than into the sky. By getting into the earth,we mean to get to know the inner structure of the earth. The most efficientway of doing this is Deep Continental Scientific Drilling Program, whichis a necessary tool of modern geosciences. It can provide the directinformation with the increase of the depth, and also the most reliableway to prove the result of geophysics research. Chinese super deepdrilling is designed to drill10km, which will face a series of challenges.With the increase of the depth, temperature, pressure and the probabilityof the accident will increase as well, that makes the forecast of the riskbecome more importation. The implement of the Deep Continental ScientificDrilling Program could be a verification mean in the lab, and also it plays the important role in the secret seeking and research improvement. Andthe launch of dynamic real-time quantitative risk assessment can decrease theloss in manpower, physics, the financial resource, and reduce the riskof program, which is really meaningful.However, the methods exist cannot satisfy the need of deep continentalscientific drilling, for the following reasons.(1) The informationresources of risk analyze are the experience of experts andsingle-resource data. In some situation, those could be criterion. Butin others, the experience could make mistakes for the subjective judgments.(2) In the general evaluation of risk analyze, we used to multiply theprobability by the influence, which is too general to make every necessaryrisks into consideration.(3) The exist risk analyze methods are static.Even though some are already applied to the management of oil exploration,most of them are about the budget and time evaluation. Those methods arenot really competent for a program like this. We need to put more effortin dynamic risk analyze. Therefore, it is necessary to make a solution.How to get mass data and make effective use of them is the premiseof the result of risk analyze, which involves data fusion of multi-scalemulti-source information, with the improvement of drilling technology andmeasures to get data.These data comes from gravity prospecting, magnetic prospecting,electrical prospecting, seismic prospecting and LWD information, whichare multi-type, multi-scale, multi-temporal, large-scale andcomplex-structure. However, if we use them properly, those data canconcert with and make up for each other. Besides, we developed an expertsystem, which is a huge resource of information. The problems that broughtwith the changing objective condition could be solved by a real time riskassessment. For example, pressure, temperature and the geologicalstructure could change the risk factor, thus the probability that the risk happens could be changed also. We need to keep indentifying and updatingthe factors, monitoring the probability of the risk during the drillingprocess, to take prevention measures in time. As the result, it needs todevelop a series of methods which are interdisciplinary and specific.In summary, the data from deep exploration are uncertainty. To solvethose problems, we need to combine the data with the risk assessmentmathematical models based on statistics. Therefore, it is reallymeaningful to do a study on a real time risk assessment while drilling.The research objects are to forecast and prevent risks, to build a riskassessment system of multi-index, by making use of data updating andassessment method improvement. This article is aimed to analyze how totake all the necessary characteristics into consideration in deepcontinental scientific drilling program, especially in super deepdrilling, for the shortage of method and technology of a real time riskassessment while drilling. The article will study on dynamic parameter fusionmethod of risk assessment to prevent random risk and to improve the assessmentbased on multi-scale, multi-source, real time and recursion data. Thusthis article studies some related issues that forms a logical framework,which can divided as following7sections.The first chapter is the abstract, which mainly introduces thebackground, purpose and significance of the study.The second chapter is the literature review, obtained by acomprehensive analysis based on literature research, which primarilydefines two important concepts involved in this dissertation anddescribes their nature.The third chapter is the first part of the three core chapters in thedissertation. It is the research on the static risk assessment methods,mainly in which risk sequencing is done according to the risk evaluationsof all the factors. Furthermore, based on the conclusions of pastexperiences and implications, a new set of four-dimensional evaluation standards is created, which includes the risk probability, the riskconsequence severity, the unpredictability and the consequencesseriousness of deterioration. For the risk assessment of this project,the new set is much more appropriate than the standards used before, sinceit can more precisely offer a forecast of risk probability closer to thefact. More intuitively and clearly it provides the project implementationparty with a quantitative standard to determine the upcoming projects,including the list of which aspects the risk occur in firstly and thecalculation of the possible risk.The fourth chapter is the second part of the core. The same as thelast, it also belongs to the research on the static risk assessment methods.But it mainly does the whole risk assessment of the project, with theapplication of integrated ISM and ANP.The fifth chapter is another part of the core. It is about the dynamicrisk assessment methods. The aim of this part research is raisedprincipally according to specific characteristics of the projectimplementation, which are presented as followings. Many factors maychange during the drilling, but it is impossible to get enough accurateinformation of changing during its initial work process. It means thatthe risk of project execution increases without obtaining sufficientaccurate information during the pre-construction. Also some factors arechanging while it is drilling deeper, but there is only a general forecastof trend in the preliminary stage. That increases the danger, too.Meanwhile it is obvious that because of the specificity of this project,there do be very serious consequences if the risk mentioned in thisdissertation occurs. So it is necessary to increase the predictabilityof risk continuously, in order to provide the executive staff with earlywarning for preparing in advance. The sixth chapter is a case study, which applies the methods mentionedin the three core chapters above to the continental scientific deepdrilling project. The results of the project in the case offer averification of the methods. It surely draws an integrated picture ofquantitative description of the project risk on one hand, and on the otherhand confirms the feasibility and correctness of the methods used.The seventh chapter is the conclusion of the whole dissertation andperspective, which contains some recommendations about the lack of thestudy done here and its direction for further research.Based on a large number of domestic and foreign literature readingand research, there raised are7specific questions of risk assessment.This dissertation does the research on the risk evaluation methods oflarge projects and discusses the problems discovered as follows:(1)How to determine the rationality of each weight in the comment set?(2)How to determine the relative importance of each risk?(3)How to achieve the perfection of the existing deficient evaluationmethods in order to get more reasonable evaluation results but withoutmissing or increasing the risk?(4)How to sort various risk factors more accurately?(5)How to evaluate the whole risk index of the project objectively?(6)How to effectively filter mass data obtained from the dynamic riskassessment?(7)How to effectively monitor the dynamic process?In view of the questions above, a solution is put forward to solvethe problem that the existing dynamic risk assessment methods are rarelyinvolved in the study, and also the evaluation dimensions of each riskfactor are improved in the process of static risk assessing.Thisdissertation deals with the improved measures, the adjustment scheme,integrated processing methods, ideas of handling process, processing technique and so on.These innovations and improvements are listed asfollows:(1)The rationality of every weight is confirmed by using analytichierarchy process and network analysis.(2)The relative importance of each risk is determined by using ANP.(3)An approach of application of a new four-dimensional assessmentmethod is presented in the method of fuzzy-synthetic evaluation.(4)The interdependence between risks is identified by using ISM andthe factor assessment method of project risk is studied on the base offuzzy-synthetic evaluation method. How to do it? Firstly identify riskfactors in the preliminary phase; and then establish the comment set andevaluation standards; thirdly determine the weight of each risk index andestablish fuzzy evaluation matrix; finally calculate the risk index ofrisk factors.(5)In order to rank the importance of risk, a method is proposed byintegrating the ISM and ANP. Based on this integration method of the wholeproject risk assessment, ISM and ANP are effectively integrated, and usedto calculate the project overall risk index.(6)Based on Kalman filter, this dissertation puts forward a kind ofextended method for filtering multi-scale data.(7)In the research of dynamic risk assessment method, combined withthe actual characteristics, this dissertation presents dynamic riskassessment model based on multi-scale information fusion.(8)This dissertation applies the creative method in SinoProbecontinental scientific deep drilling project in order to verify itsfeasibility.The research thinking and technical route of static method of riskassessment includes the following aspects: (1)The fuzzy comprehensive evaluation method is used to assessproject risk factors.Firstly identify risk factors in the preliminary phase; and thenestablish the comment set and evaluation standards; thirdly determine theweight of each risk index and establish fuzzy evaluation matrix; finallycalculate the risk index of risk factors.(2)The method of the whole project risk assessment, which integratesISM and ANP, is applied in the whole project risk assessment.ISM and ANP are effectively integrated in order to calculate theproject overall risk index. First, determine the degree ofinterdependence between each risk and build a reachable matrix; then,establish a directed graph and an interpretive structural model; thirdly,with the application of ANP, build net structure in order to set up supermatrix; next, on the basis of the super matrix, design clustering matrixand weighted super matrix; finally, get the result of the whole projectrisk assessment.The research thinking and technical route of dynamic method of riskassessment includes the following aspects:(1)The problem about filtering multi-source informationThe data of this project is gained in diversified ways, includinggravity measuring, magnetic density surveying, resistivity checking,seismic surveying, well logging and mud logging in the process of drillingand so on. For a certain risk factors, not all data can be used. Sometimesseveral measurements are able to refer to the same geologicalcharacteristics, but the accuracy of their precision and characterizationare different from each other. To deal with this, the dissertation focuseson how to efficiently use these data without redundant information. inThe referred concept of multi-sensor here is not completely the same aspast, but a generalized one, regarding various means of obtaining data as a multi-sensor target. Partly the research focuses on introducing theconcept of multi-scale Kalman filtering and establishing multi-sensormulti-scale algorithm.(2)The expressing method and the modeling approach of Multi-scaleinformation fusion used in the dynamic processThe expressing method and the modeling approach of Multi-scaleinformation fusion used in the dynamic process are established, andapplied in monitoring the dynamic process in order to assess the risk ofprocess.Chapter3-6are core in the dissertation.The research results include the static risk assessment methodresearch and the research of dynamic risk assessment method. One of theshortages of this article is that it has not verified the risks by dynamicrisk assessment for the reason that dynamic risk assessment needs largeamount of workload. In the future study, we need to improve the dataprocessing to deal with the multi-scale and large amount data based onthis program.
模糊統(tǒng)計(jì)決策理論基礎(chǔ)上的大型工程項(xiàng)目風(fēng)險(xiǎn)評(píng)估方法研究 摘要4-10Abstract10-17第1章 緒論20-29 1.1 研究背景和問(wèn)題提出20-21 1.2 研究目的和意義21-23 1.3 研究思路及主要內(nèi)容23-26 1.3.1 研究思路23-24 1.3.2 研究?jī)?nèi)容24-26 1.4 本文創(chuàng)新之處26-29第2章 研究現(xiàn)狀綜述29-40 2.1 概念定義與性質(zhì)分析29-33 2.1.1 大型復(fù)雜工程項(xiàng)目的定義與性質(zhì)29-32 2.1.2 模糊統(tǒng)計(jì)決策理論的定義32-33 2.2 風(fēng)險(xiǎn)評(píng)估方法研究現(xiàn)狀33-40 2.2.1 國(guó)外研究現(xiàn)狀33-35 2.2.2 國(guó)內(nèi)研究現(xiàn)狀35-40第3章 基于模糊綜合評(píng)價(jià)法的項(xiàng)目風(fēng)險(xiǎn)因素評(píng)估方法研究40-57 3.1 預(yù)備階段41-50 3.1.1 建立風(fēng)險(xiǎn)評(píng)估組41-42 3.1.2 識(shí)別風(fēng)險(xiǎn)因素42-50 3.2 評(píng)估特定風(fēng)險(xiǎn)50-56 3.2.1 確定評(píng)語(yǔ)集51-52 3.2.2 建立評(píng)價(jià)標(biāo)準(zhǔn)52-53 3.2.3 確定每個(gè)風(fēng)險(xiǎn)指標(biāo)的權(quán)重53-54 3.2.4 建立模糊評(píng)價(jià)矩陣54 3.2.5 計(jì)算風(fēng)險(xiǎn)指數(shù)54-56 3.3 本章小結(jié)56-57第4章 基于集成ISM 和ANP方法的項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估方法研究57-79 4.1 項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估的基本方法57-62 4.1.1 解釋結(jié)構(gòu)模型法57-58 4.1.2 層次分析法58-62 4.2 集成ISM和ANP的項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估方法研究62-77 4.2.1 確定各個(gè)風(fēng)險(xiǎn)相互依賴(lài)程度62-65 4.2.2 構(gòu)建ANP網(wǎng)絡(luò)結(jié)構(gòu)65-69 4.2.5 形成未加權(quán)超矩陣69-74 4.2.6 構(gòu)建聚類(lèi)矩陣74-75 4.2.7 構(gòu)建加權(quán)超矩陣75 4.2.8 形成極限級(jí)矩陣75-77 4.3 評(píng)估項(xiàng)目整體風(fēng)險(xiǎn)指數(shù)77-78 4.4 本章小結(jié)78-79第5章 基于多尺度信息融合的動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估方法研究79-125 5.1 多尺度數(shù)據(jù)的過(guò)濾80-89 5.1.1 分塊系統(tǒng)的多尺度描述81-82 5.1.2 多尺度貫序式Kalman濾波82-86 5.1.3 MSBKF算法推導(dǎo)86-89 5.2 多尺度多傳感器數(shù)據(jù)融合89-105 5.2.1 多傳感器系統(tǒng)描述90-91 5.2.2 多尺度序貫Kalman濾波器實(shí)時(shí)性和遞歸性91-99 5.2.3 多尺度序貫Kalman濾波器融合性99-105 5.3 動(dòng)態(tài)過(guò)程多尺度數(shù)據(jù)融合表示方法與建模105-117 5.3.1 動(dòng)態(tài)過(guò)程多尺度信息融合表示方法106-113 5.3.2 動(dòng)態(tài)過(guò)程多尺度信息融合建模113-117 5.4 多尺度數(shù)據(jù)融合方法的動(dòng)態(tài)過(guò)程監(jiān)控117-124 5.4.1 問(wèn)題描述與分析117-118 5.4.2 基于數(shù)據(jù)融合理論的動(dòng)態(tài)過(guò)程監(jiān)控118-122 5.4.3 基于多尺度數(shù)據(jù)融合的動(dòng)態(tài)過(guò)程監(jiān)控方法122-123 5.4.4 多尺度方法的優(yōu)勢(shì)123-124 5.5 本章小結(jié)124-125第6章 案例應(yīng)用125-153 6.1 項(xiàng)目風(fēng)險(xiǎn)因素評(píng)估125-132 6.1.1 建立風(fēng)險(xiǎn)評(píng)估組125 6.1.2 確定風(fēng)險(xiǎn)因素125-126 6.1.3 確定評(píng)估標(biāo)準(zhǔn)126 6.1.4 建立評(píng)語(yǔ)集126 6.1.5 確定每個(gè)標(biāo)準(zhǔn)的權(quán)重126-128 6.1.6 建立模糊評(píng)估矩陣128-130 6.1.7 計(jì)算風(fēng)險(xiǎn)指數(shù)130-132 6.2 項(xiàng)目整體風(fēng)險(xiǎn)評(píng)估132-145 6.2.1 整體風(fēng)險(xiǎn)評(píng)估前期工作132-144 6.2.2 確定每個(gè)風(fēng)險(xiǎn)的權(quán)重144 6.2.3 評(píng)估總體風(fēng)險(xiǎn)144-145 6.3 動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估145-153 6.3.1 數(shù)據(jù)過(guò)濾146-149 6.3.2 多尺度數(shù)據(jù)融合149-151 6.3.3 動(dòng)態(tài)過(guò)程監(jiān)控151-153第7章 結(jié)論與展望153-156 7.1 全文總結(jié)153-155 7.2 研究展望155-156參考文獻(xiàn)156-166作者簡(jiǎn)介及在校期間所取得的科研成果166-168致謝168-169
本文地址:
本文關(guān)鍵詞:模糊統(tǒng)計(jì)決策理論基礎(chǔ)上的大型工程項(xiàng)目風(fēng)險(xiǎn)評(píng)估方法研究,由筆耕文化傳播整理發(fā)布。
,本文編號(hào):72502
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/72502.html