正交分析氣固兩相噴射顆粒的影響因素(英文)
發(fā)布時間:2021-10-13 10:25
氣固兩相顆粒噴射技術應用廣泛,故對其影響因素的研究具有重要的工程意義。首先利用正交實驗設計原理對壓強與質量2個因素進行安排實驗;然后基于CFD-DEM模型利用FLUENT進行數值模擬,將計算的結果進行極差分析和方差分析;最后設計一套噴射實驗,拍攝顆粒噴射軌跡,并將拍攝圖片進行顏色直方圖處理。得出以下結論:通過極差分析和方差分析得出壓強的影響大于質量,且當壓強為0.3MPa、質量為2g時,其均值最小;當壓強取值為0.3 MPa、質量取值為2g時,其噴射效果達到最優(yōu)化,且拍攝的效果最佳,與數值模擬的結果一致。
【文章來源】:實驗流體力學. 2020,34(05)北大核心CSCD
【文章頁數】:8 頁
【部分圖文】:
模型簡圖
Particles were put into a rectangular frame with a diameter of 0.05 m and a length of 0.1 m.The simulation experiments were carried out according to the parameters in Table 1.The calculation steps were 500 and the particles were tracked.The simulation calculates the percentage of particle loss in each experiment,that is to say,the ratio of the number of tracked particles to the total number of tracked particles is the amount of particle loss in the simulation process.The data of the 16computational simulations are shown in Table 2,and the percentage of loss is shown in Fig.2.By performing the range analysis of the 16experiments,the mean value of pressure and mass was the smallest when the pressure was 0.3 MPa and the mass was 2g.The range of the pressure and the mass are 20.1%and 12.4%,respectively,indicating that the magnitude of the pressure has the greatest impact.Then the variance analysis was performed on the two factors of the pressure and the mass,as shown in Table 3.The F ratios of the pressure and the mass obtained from the variance analysis table were 1.431 and 0.569,respectively,indicating that the influence of pressure was greater.
This experiment mainly observes the flow trajectory of particles under different injection pressures(The dimensions of main instruments in the experiment are shown in Fig.1).The experimental diagram is shown in Fig.3,where A is a compressed air mercury,B is a gas storage chamber,C is a pulse valve,and D is an imaging system,E is where the particles are stored.Using the pulse valve C to eject particles at E.And the instruments used in this experiment are shown in Table 4.3.2 Analysis of experimental results
【參考文獻】:
期刊論文
[1]顆粒化肥水平氣送式螺旋組合可調定量供肥裝置設計與試驗[J]. 雷小龍,李蒙良,張黎驊,任萬軍. 農業(yè)工程學報. 2018(19)
[2]基于傳輸線理論的電磁波反射系數正交分析[J]. 宋鑫華,閆鴻浩,馬征征,王洋,徐彬. 科學技術與工程. 2018(12)
[3]Investigation on Measurement of Size and Concentration of Solid Phase Particles in Gas-Solid Two Phase Flow[J]. WANG Yueming,LYU Xiaoqi,LI Wentao,YAO Guodong,BAI Junyuan,BAO An. Chinese Journal of Electronics. 2018(02)
[4]鈦渣噴動床沸騰氯化氣固兩相流數值模擬[J]. 王軍,趙英濤,曹麗,朱奎松. 礦產保護與利用. 2017(06)
[5]氣固噴射器收縮型噴嘴的仿真模擬及實驗[J]. 張海峰,余柄辰,田世偉. 煤炭技術. 2018(01)
[6]果園風送噴霧機導流板角度對氣流場三維分布的影響[J]. 呂曉蘭,張美娜,常有宏,雷嘵暉,楊青松. 農業(yè)工程學報. 2017(15)
[7]基于尖點突變理論的漿砌塊石邊坡穩(wěn)定性研究[J]. 宋鑫華,閆鴻浩. 巖土力學. 2016(12)
[8]冶金爐外底噴粉氣-固噴射器效率影響因素[J]. 謝劍波,周建安,李志強,蔣學凱. 中國冶金. 2016(09)
[9]基于FLUENT對袋式除塵器氣流流場的數值模擬[J]. 阮競蘭,張雙,張海紅. 河南工業(yè)大學學報(自然科學版). 2015(04)
[10]超細微粒滅火劑運動特性的數值模擬[J]. 華敏,徐大用,潘旭海,潘仁明. 安全與環(huán)境學報. 2013(06)
本文編號:3434479
【文章來源】:實驗流體力學. 2020,34(05)北大核心CSCD
【文章頁數】:8 頁
【部分圖文】:
模型簡圖
Particles were put into a rectangular frame with a diameter of 0.05 m and a length of 0.1 m.The simulation experiments were carried out according to the parameters in Table 1.The calculation steps were 500 and the particles were tracked.The simulation calculates the percentage of particle loss in each experiment,that is to say,the ratio of the number of tracked particles to the total number of tracked particles is the amount of particle loss in the simulation process.The data of the 16computational simulations are shown in Table 2,and the percentage of loss is shown in Fig.2.By performing the range analysis of the 16experiments,the mean value of pressure and mass was the smallest when the pressure was 0.3 MPa and the mass was 2g.The range of the pressure and the mass are 20.1%and 12.4%,respectively,indicating that the magnitude of the pressure has the greatest impact.Then the variance analysis was performed on the two factors of the pressure and the mass,as shown in Table 3.The F ratios of the pressure and the mass obtained from the variance analysis table were 1.431 and 0.569,respectively,indicating that the influence of pressure was greater.
This experiment mainly observes the flow trajectory of particles under different injection pressures(The dimensions of main instruments in the experiment are shown in Fig.1).The experimental diagram is shown in Fig.3,where A is a compressed air mercury,B is a gas storage chamber,C is a pulse valve,and D is an imaging system,E is where the particles are stored.Using the pulse valve C to eject particles at E.And the instruments used in this experiment are shown in Table 4.3.2 Analysis of experimental results
【參考文獻】:
期刊論文
[1]顆粒化肥水平氣送式螺旋組合可調定量供肥裝置設計與試驗[J]. 雷小龍,李蒙良,張黎驊,任萬軍. 農業(yè)工程學報. 2018(19)
[2]基于傳輸線理論的電磁波反射系數正交分析[J]. 宋鑫華,閆鴻浩,馬征征,王洋,徐彬. 科學技術與工程. 2018(12)
[3]Investigation on Measurement of Size and Concentration of Solid Phase Particles in Gas-Solid Two Phase Flow[J]. WANG Yueming,LYU Xiaoqi,LI Wentao,YAO Guodong,BAI Junyuan,BAO An. Chinese Journal of Electronics. 2018(02)
[4]鈦渣噴動床沸騰氯化氣固兩相流數值模擬[J]. 王軍,趙英濤,曹麗,朱奎松. 礦產保護與利用. 2017(06)
[5]氣固噴射器收縮型噴嘴的仿真模擬及實驗[J]. 張海峰,余柄辰,田世偉. 煤炭技術. 2018(01)
[6]果園風送噴霧機導流板角度對氣流場三維分布的影響[J]. 呂曉蘭,張美娜,常有宏,雷嘵暉,楊青松. 農業(yè)工程學報. 2017(15)
[7]基于尖點突變理論的漿砌塊石邊坡穩(wěn)定性研究[J]. 宋鑫華,閆鴻浩. 巖土力學. 2016(12)
[8]冶金爐外底噴粉氣-固噴射器效率影響因素[J]. 謝劍波,周建安,李志強,蔣學凱. 中國冶金. 2016(09)
[9]基于FLUENT對袋式除塵器氣流流場的數值模擬[J]. 阮競蘭,張雙,張海紅. 河南工業(yè)大學學報(自然科學版). 2015(04)
[10]超細微粒滅火劑運動特性的數值模擬[J]. 華敏,徐大用,潘旭海,潘仁明. 安全與環(huán)境學報. 2013(06)
本文編號:3434479
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/3434479.html