阻尼環(huán)-轉(zhuǎn)子-齒輪傳動(dòng)系統(tǒng)彎扭耦合振動(dòng)研究
[Abstract]:As a practical transmission system, gear transmission is widely used in various mechanical transmission systems, such as the accessory drive system of the aero-engine, the offset distance (i.e. hypoid gear) transmission in the automobile power system, the helicopter transmission system, and the like. As the gear drive system is normally operating in a relatively harsh operating environment, it is susceptible to loads such as vibration and shock. Therefore, the research on the vibration reduction of the gear transmission system has been one of the hot spots of the domestic and foreign scholars. The damping ring vibration reduction and noise reduction technology is a very effective measure to improve the vibration performance of the gear. The invention has the characteristics of compact structure, simple process and the like, and has wide application in the engineering. However, the existing research on the damping ring is mostly based on the empirical formula and the experiment, which will undoubtedly increase the production cycle and the research cost. Therefore, it is very important to carry out in-depth theoretical analysis of the damping ring-gear transmission system. In this paper, the dynamic model of a two-degree-of-freedom damping ring-gear transmission system, which takes into account the transmission error and the Sribbeck friction model, is established based on the working principle of the power shock absorber. The solution of the dynamic equations is solved by the harmonic balance method, the approximate analytical solution of the system is obtained, and the numerical solution obtained by the four-order Runge-Kutta method is compared, and the validity of the analytical solution is verified. The amplitude-frequency response of the system is given by the numerical results, and the advantages and disadvantages of the Sribbeck friction model and the Coulomb friction model in the system are compared. The results show that the addition of the damping ring can not only reduce the resonance response amplitude of the system, but also have only a slight effect on the natural frequency of the system. But this gap will gradually increase as the friction force increases. Therefore, taking into account the thermal effect of the friction, the use of the Stribeck friction model should be considered as much as possible in modeling. However, that use of the Coulomb friction model can also result in very close results. In this paper, an 8-degree-of-freedom rotor-gear transmission system bending and torsion coupling dynamic model is established based on the lumped parameter method. According to the dynamic equation of the system, the natural frequency and the main vibration mode of the system are obtained, and compared with the inherent characteristics of the system obtained by the ANSYS calculation, the validity of the parametric modeling method in this chapter is verified. Then, the influence of the meshing stiffness on the inherent characteristics of the system is analyzed, and the dynamic equation of the system is solved by the step Runge-Kutta method, and the steady-state response of the partial degree of freedom of the system in the resonance is obtained. By installing a damping ring on the main/ driven gear of the 8-degree-of-freedom rotor-gear transmission system model, the dynamic model of a 10-degree-of-freedom rotor-gear transmission system is obtained. The four-order Runge-Kutta method is used to solve the system, and the amplitude-frequency response of each degree of freedom of the system in resonance is obtained, and some degree of freedom is taken as an example. Then, the influence of the change of these structural parameters on the dynamic characteristics of the system is analyzed. The results show that the structure parameters of the damping ring have little influence on the low-order resonance of the system, and the higher-order resonance is obviously affected; the three structural parameter values of the damping ring are increased, and the damping of the partial degree of freedom of the system is facilitated in a certain range, Includes the bending vibration of the rotor and the torsional vibration of the gear. At the same time, the change of these three parameters can lead to the change of some degree of freedom of resonance points of the system, and the installation stiffness and the installation damping have the best value, so that the damping effect of the system is the best.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB535
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張婷;李育錫;王三民;;功率二分支齒輪傳動(dòng)系統(tǒng)靜態(tài)均載特性研究[J];機(jī)械傳動(dòng);2012年03期
2 于東洋;張超;葉盛鑒;李威;鄭浩;;齒輪傳動(dòng)系統(tǒng)溫度預(yù)測(cè)方法研究[J];機(jī)械傳動(dòng);2013年06期
3 徐毓嫻;白立芬;于水;李慶祥;;齒輪傳動(dòng)系統(tǒng)精度測(cè)試[J];實(shí)驗(yàn)技術(shù)與管理;1997年01期
4 周美立,齊從謙,吳天星;齒輪傳動(dòng)系統(tǒng)的相似分析與設(shè)計(jì)[J];機(jī)械傳動(dòng);1997年02期
5 諸偉新;齒輪傳動(dòng)系統(tǒng)的振動(dòng)分析[J];河北職工大學(xué)學(xué)報(bào);2000年01期
6 陸一平,查建中,Tony C Woo;平行軸齒輪傳動(dòng)系統(tǒng)布局設(shè)計(jì)的膨脹方法[J];機(jī)械工程學(xué)報(bào);2001年12期
7 李潤(rùn)方,韓西,林騰蛟,陶澤光;齒輪傳動(dòng)系統(tǒng)結(jié)合部動(dòng)力學(xué)參數(shù)識(shí)別[J];中國(guó)機(jī)械工程;2001年12期
8 潘宏俠,姚竹亭;齒輪傳動(dòng)系統(tǒng)狀態(tài)檢測(cè)與故障診斷[J];華北工學(xué)院學(xué)報(bào);2001年04期
9 孫智民,沈允文,王三民,李華;星型齒輪傳動(dòng)系統(tǒng)的非線性動(dòng)力學(xué)分析[J];西北工業(yè)大學(xué)學(xué)報(bào);2002年02期
10 陳威,遲寶山;工程機(jī)械齒輪傳動(dòng)系統(tǒng)噪聲分析與控制[J];現(xiàn)代制造工程;2004年01期
相關(guān)會(huì)議論文 前3條
1 王慶洋;曹登慶;;齒輪傳動(dòng)系統(tǒng)的減振降噪研究[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
2 李朝峰;周世華;劉杰;聞邦椿;;考慮齒側(cè)間隙的齒輪傳動(dòng)系統(tǒng)非線性動(dòng)力學(xué)特性研究[A];第11屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)(ROTDYN2014)論文集(上冊(cè))[C];2014年
3 王靜;李明;劉剛;;滾動(dòng)軸承-錐齒輪傳動(dòng)系統(tǒng)非線性動(dòng)力學(xué)研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前8條
1 鮑和云;兩級(jí)星型齒輪傳動(dòng)系統(tǒng)分流特性及動(dòng)力學(xué)研究[D];南京航空航天大學(xué);2006年
2 陳會(huì)濤;風(fēng)力發(fā)電機(jī)齒輪傳動(dòng)系統(tǒng)隨機(jī)振動(dòng)分析及動(dòng)力可靠性概率優(yōu)化設(shè)計(jì)[D];重慶大學(xué);2012年
3 周雁冰;基于高階統(tǒng)計(jì)量的齒輪傳動(dòng)系統(tǒng)故障特征提取方法研究[D];華北電力大學(xué);2013年
4 齊立群;空間齒輪傳動(dòng)系統(tǒng)接觸動(dòng)力學(xué)及相關(guān)問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2012年
5 朱增寶;封閉差動(dòng)人字齒輪傳動(dòng)系統(tǒng)均載及動(dòng)力學(xué)特性分析研究[D];南京航空航天大學(xué);2013年
6 龍泉;風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性及故障診斷方法研究[D];華北電力大學(xué);2012年
7 張鋒;基于壓電作動(dòng)器的齒輪傳動(dòng)系統(tǒng)振動(dòng)主動(dòng)控制及算法研究[D];重慶大學(xué);2013年
8 韓振南;齒輪傳動(dòng)系統(tǒng)的故障診斷方法的研究[D];太原理工大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 王兆龍;齒輪傳動(dòng)系統(tǒng)的非光滑分岔行為研究[D];燕山大學(xué);2015年
2 李楓;高速動(dòng)車組轉(zhuǎn)向架齒輪傳動(dòng)系統(tǒng)的仿真分析與試驗(yàn)研究[D];上海交通大學(xué);2015年
3 柴立發(fā);開溝作業(yè)機(jī)組組合傳動(dòng)條統(tǒng)設(shè)計(jì)及機(jī)理分析[D];河北農(nóng)業(yè)大學(xué);2015年
4 張凱;直齒輪傳動(dòng)系統(tǒng)彈性誤差運(yùn)動(dòng)模型及精度分析[D];大連理工大學(xué);2015年
5 姬娟;基于多參數(shù)仿真分析的二級(jí)齒輪傳動(dòng)系統(tǒng)的動(dòng)力學(xué)研究[D];蘭州交通大學(xué);2015年
6 陶朝林;齒輪傳動(dòng)系統(tǒng)的動(dòng)態(tài)特性及參數(shù)合理匹配研究[D];蘭州交通大學(xué);2015年
7 李自強(qiáng);基于非線性自適應(yīng)濾波算法的齒輪傳動(dòng)系統(tǒng)振動(dòng)主動(dòng)控制研究[D];重慶大學(xué);2015年
8 梁亦棟;仿形秸稈粉碎還田機(jī)設(shè)計(jì)研究[D];山東理工大學(xué);2015年
9 羅鑫鑫;軌道車車軸齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性研究與分析[D];湘潭大學(xué);2015年
10 宋茂華;乘坐式高速插秧機(jī)后橋機(jī)構(gòu)的研究與設(shè)計(jì)[D];山東理工大學(xué);2015年
,本文編號(hào):2505008
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2505008.html