天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

阻尼環(huán)-轉(zhuǎn)子-齒輪傳動(dòng)系統(tǒng)彎扭耦合振動(dòng)研究

發(fā)布時(shí)間:2019-06-24 11:00
【摘要】:齒輪傳動(dòng)作為一種實(shí)用的傳動(dòng)系統(tǒng),被普遍應(yīng)用于各類機(jī)械傳動(dòng)系統(tǒng)中,如航空發(fā)動(dòng)機(jī)的附件傳動(dòng)系統(tǒng)、汽車動(dòng)力系統(tǒng)中有偏置距(即準(zhǔn)雙曲面齒輪)傳動(dòng)、直升機(jī)傳動(dòng)系統(tǒng)等。由于齒輪傳動(dòng)系統(tǒng)通常運(yùn)作在比較惡劣的工作環(huán)境中,導(dǎo)致其容易受到振動(dòng)和沖擊等載荷的影響。因此,對(duì)齒輪傳動(dòng)系統(tǒng)進(jìn)行減振研究一直是國(guó)內(nèi)外學(xué)者關(guān)注的熱點(diǎn)之一。阻尼環(huán)減振降噪技術(shù)是改善齒輪振動(dòng)性能的一個(gè)非常有效的措施。它具有結(jié)構(gòu)緊湊、工藝簡(jiǎn)單等特點(diǎn),在工程中應(yīng)用廣泛。但是,現(xiàn)有關(guān)于阻尼環(huán)的研究大多是基于經(jīng)驗(yàn)公式和實(shí)驗(yàn)來(lái)進(jìn)行的,這樣無(wú)疑會(huì)增加生產(chǎn)周期和研究成本。因此,對(duì)阻尼環(huán)-齒輪傳動(dòng)系統(tǒng)進(jìn)行深入的理論分析顯得尤為重要。結(jié)合動(dòng)力減振器的工作原理,基于集中參數(shù)法,建立了考慮傳動(dòng)誤差和Stribeck摩擦力模型的2自由度阻尼環(huán)-齒輪傳動(dòng)系統(tǒng)的動(dòng)力學(xué)模型。采用諧波平衡法對(duì)動(dòng)力學(xué)方程組進(jìn)行求解,得到了系統(tǒng)的近似解析解,并與采用4階Runge-Kutta法所得的數(shù)值解進(jìn)行了對(duì)比,驗(yàn)證了解析解的有效性。應(yīng)用數(shù)值結(jié)果給出了系統(tǒng)的幅頻響應(yīng),對(duì)比了Stribeck摩擦力模型和Coulomb摩擦力模型在該系統(tǒng)中的優(yōu)劣。結(jié)果表明,加裝阻尼環(huán)不僅可以降低系統(tǒng)的共振響應(yīng)幅值,而且對(duì)系統(tǒng)的固有頻率僅有微小的影響;采用Stribeck摩擦力模型和Coulomb摩擦力模型建模都能得到非常接近的結(jié)果,但是這個(gè)差距會(huì)隨著摩擦力的增大逐漸增大。因此,考慮到摩擦熱效應(yīng),建模時(shí)應(yīng)盡可能考慮使用Stribeck摩擦力模型。但是,使用Coulomb摩擦力模型建模也能得到非常接近的結(jié)果。以航空發(fā)動(dòng)機(jī)轉(zhuǎn)子實(shí)驗(yàn)臺(tái)為實(shí)際研究對(duì)象,基于集中參數(shù)法建立了8自由度的轉(zhuǎn)子-齒輪傳動(dòng)系統(tǒng)彎扭耦合動(dòng)力學(xué)模型。根據(jù)系統(tǒng)的動(dòng)力學(xué)方程,求得了系統(tǒng)的固有頻率和主振型,并與通過(guò)ANSYS計(jì)算得到的系統(tǒng)固有特性進(jìn)行了對(duì)比,驗(yàn)證了本章參數(shù)化建模方法的有效性。然后,分析了嚙合剛度對(duì)系統(tǒng)固有特性的影響,并采用4階Runge-Kutta法對(duì)系統(tǒng)的動(dòng)力學(xué)方程進(jìn)行了求解,得到了系統(tǒng)部分自由度在共振時(shí)的穩(wěn)態(tài)響應(yīng)。通過(guò)在8自由度轉(zhuǎn)子-齒輪傳動(dòng)系統(tǒng)模型的主/從動(dòng)齒輪上分別安裝一個(gè)阻尼環(huán)的方式,得到了10自由度的安裝阻尼環(huán)的轉(zhuǎn)子-齒輪傳動(dòng)系統(tǒng)彎扭耦合動(dòng)力學(xué)模型。采用4階Runge-Kutta法對(duì)該系統(tǒng)進(jìn)行求解,得到了系統(tǒng)各自由度在共振時(shí)的幅頻響應(yīng),并以部分自由度為例進(jìn)行了分析。然后,以阻尼環(huán)的安裝剛度、安裝阻尼、摩擦力為變量,分析了這些結(jié)構(gòu)參數(shù)的變化對(duì)系統(tǒng)動(dòng)力學(xué)特性的影響。結(jié)果表明,阻尼環(huán)的結(jié)構(gòu)參數(shù)對(duì)系統(tǒng)的低階共振幾乎沒(méi)有影響,而對(duì)高階共振有比較明顯的影響;增大阻尼環(huán)的三個(gè)結(jié)構(gòu)參數(shù)值,在一定范圍內(nèi)有利于系統(tǒng)部分自由度的減振,包括轉(zhuǎn)子的彎曲振動(dòng)和齒輪的扭轉(zhuǎn)振動(dòng)。同時(shí),這三個(gè)參數(shù)的變化,可能會(huì)導(dǎo)致系統(tǒng)某些自由度共振點(diǎn)數(shù)目的變化;安裝剛度和安裝阻尼都存在最佳值,使得系統(tǒng)的減振效果最佳。
[Abstract]:As a practical transmission system, gear transmission is widely used in various mechanical transmission systems, such as the accessory drive system of the aero-engine, the offset distance (i.e. hypoid gear) transmission in the automobile power system, the helicopter transmission system, and the like. As the gear drive system is normally operating in a relatively harsh operating environment, it is susceptible to loads such as vibration and shock. Therefore, the research on the vibration reduction of the gear transmission system has been one of the hot spots of the domestic and foreign scholars. The damping ring vibration reduction and noise reduction technology is a very effective measure to improve the vibration performance of the gear. The invention has the characteristics of compact structure, simple process and the like, and has wide application in the engineering. However, the existing research on the damping ring is mostly based on the empirical formula and the experiment, which will undoubtedly increase the production cycle and the research cost. Therefore, it is very important to carry out in-depth theoretical analysis of the damping ring-gear transmission system. In this paper, the dynamic model of a two-degree-of-freedom damping ring-gear transmission system, which takes into account the transmission error and the Sribbeck friction model, is established based on the working principle of the power shock absorber. The solution of the dynamic equations is solved by the harmonic balance method, the approximate analytical solution of the system is obtained, and the numerical solution obtained by the four-order Runge-Kutta method is compared, and the validity of the analytical solution is verified. The amplitude-frequency response of the system is given by the numerical results, and the advantages and disadvantages of the Sribbeck friction model and the Coulomb friction model in the system are compared. The results show that the addition of the damping ring can not only reduce the resonance response amplitude of the system, but also have only a slight effect on the natural frequency of the system. But this gap will gradually increase as the friction force increases. Therefore, taking into account the thermal effect of the friction, the use of the Stribeck friction model should be considered as much as possible in modeling. However, that use of the Coulomb friction model can also result in very close results. In this paper, an 8-degree-of-freedom rotor-gear transmission system bending and torsion coupling dynamic model is established based on the lumped parameter method. According to the dynamic equation of the system, the natural frequency and the main vibration mode of the system are obtained, and compared with the inherent characteristics of the system obtained by the ANSYS calculation, the validity of the parametric modeling method in this chapter is verified. Then, the influence of the meshing stiffness on the inherent characteristics of the system is analyzed, and the dynamic equation of the system is solved by the step Runge-Kutta method, and the steady-state response of the partial degree of freedom of the system in the resonance is obtained. By installing a damping ring on the main/ driven gear of the 8-degree-of-freedom rotor-gear transmission system model, the dynamic model of a 10-degree-of-freedom rotor-gear transmission system is obtained. The four-order Runge-Kutta method is used to solve the system, and the amplitude-frequency response of each degree of freedom of the system in resonance is obtained, and some degree of freedom is taken as an example. Then, the influence of the change of these structural parameters on the dynamic characteristics of the system is analyzed. The results show that the structure parameters of the damping ring have little influence on the low-order resonance of the system, and the higher-order resonance is obviously affected; the three structural parameter values of the damping ring are increased, and the damping of the partial degree of freedom of the system is facilitated in a certain range, Includes the bending vibration of the rotor and the torsional vibration of the gear. At the same time, the change of these three parameters can lead to the change of some degree of freedom of resonance points of the system, and the installation stiffness and the installation damping have the best value, so that the damping effect of the system is the best.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB535

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張婷;李育錫;王三民;;功率二分支齒輪傳動(dòng)系統(tǒng)靜態(tài)均載特性研究[J];機(jī)械傳動(dòng);2012年03期

2 于東洋;張超;葉盛鑒;李威;鄭浩;;齒輪傳動(dòng)系統(tǒng)溫度預(yù)測(cè)方法研究[J];機(jī)械傳動(dòng);2013年06期

3 徐毓嫻;白立芬;于水;李慶祥;;齒輪傳動(dòng)系統(tǒng)精度測(cè)試[J];實(shí)驗(yàn)技術(shù)與管理;1997年01期

4 周美立,齊從謙,吳天星;齒輪傳動(dòng)系統(tǒng)的相似分析與設(shè)計(jì)[J];機(jī)械傳動(dòng);1997年02期

5 諸偉新;齒輪傳動(dòng)系統(tǒng)的振動(dòng)分析[J];河北職工大學(xué)學(xué)報(bào);2000年01期

6 陸一平,查建中,Tony C Woo;平行軸齒輪傳動(dòng)系統(tǒng)布局設(shè)計(jì)的膨脹方法[J];機(jī)械工程學(xué)報(bào);2001年12期

7 李潤(rùn)方,韓西,林騰蛟,陶澤光;齒輪傳動(dòng)系統(tǒng)結(jié)合部動(dòng)力學(xué)參數(shù)識(shí)別[J];中國(guó)機(jī)械工程;2001年12期

8 潘宏俠,姚竹亭;齒輪傳動(dòng)系統(tǒng)狀態(tài)檢測(cè)與故障診斷[J];華北工學(xué)院學(xué)報(bào);2001年04期

9 孫智民,沈允文,王三民,李華;星型齒輪傳動(dòng)系統(tǒng)的非線性動(dòng)力學(xué)分析[J];西北工業(yè)大學(xué)學(xué)報(bào);2002年02期

10 陳威,遲寶山;工程機(jī)械齒輪傳動(dòng)系統(tǒng)噪聲分析與控制[J];現(xiàn)代制造工程;2004年01期

相關(guān)會(huì)議論文 前3條

1 王慶洋;曹登慶;;齒輪傳動(dòng)系統(tǒng)的減振降噪研究[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年

2 李朝峰;周世華;劉杰;聞邦椿;;考慮齒側(cè)間隙的齒輪傳動(dòng)系統(tǒng)非線性動(dòng)力學(xué)特性研究[A];第11屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)(ROTDYN2014)論文集(上冊(cè))[C];2014年

3 王靜;李明;劉剛;;滾動(dòng)軸承-錐齒輪傳動(dòng)系統(tǒng)非線性動(dòng)力學(xué)研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年

相關(guān)博士學(xué)位論文 前8條

1 鮑和云;兩級(jí)星型齒輪傳動(dòng)系統(tǒng)分流特性及動(dòng)力學(xué)研究[D];南京航空航天大學(xué);2006年

2 陳會(huì)濤;風(fēng)力發(fā)電機(jī)齒輪傳動(dòng)系統(tǒng)隨機(jī)振動(dòng)分析及動(dòng)力可靠性概率優(yōu)化設(shè)計(jì)[D];重慶大學(xué);2012年

3 周雁冰;基于高階統(tǒng)計(jì)量的齒輪傳動(dòng)系統(tǒng)故障特征提取方法研究[D];華北電力大學(xué);2013年

4 齊立群;空間齒輪傳動(dòng)系統(tǒng)接觸動(dòng)力學(xué)及相關(guān)問(wèn)題研究[D];哈爾濱工業(yè)大學(xué);2012年

5 朱增寶;封閉差動(dòng)人字齒輪傳動(dòng)系統(tǒng)均載及動(dòng)力學(xué)特性分析研究[D];南京航空航天大學(xué);2013年

6 龍泉;風(fēng)電機(jī)組齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性及故障診斷方法研究[D];華北電力大學(xué);2012年

7 張鋒;基于壓電作動(dòng)器的齒輪傳動(dòng)系統(tǒng)振動(dòng)主動(dòng)控制及算法研究[D];重慶大學(xué);2013年

8 韓振南;齒輪傳動(dòng)系統(tǒng)的故障診斷方法的研究[D];太原理工大學(xué);2003年

相關(guān)碩士學(xué)位論文 前10條

1 王兆龍;齒輪傳動(dòng)系統(tǒng)的非光滑分岔行為研究[D];燕山大學(xué);2015年

2 李楓;高速動(dòng)車組轉(zhuǎn)向架齒輪傳動(dòng)系統(tǒng)的仿真分析與試驗(yàn)研究[D];上海交通大學(xué);2015年

3 柴立發(fā);開溝作業(yè)機(jī)組組合傳動(dòng)條統(tǒng)設(shè)計(jì)及機(jī)理分析[D];河北農(nóng)業(yè)大學(xué);2015年

4 張凱;直齒輪傳動(dòng)系統(tǒng)彈性誤差運(yùn)動(dòng)模型及精度分析[D];大連理工大學(xué);2015年

5 姬娟;基于多參數(shù)仿真分析的二級(jí)齒輪傳動(dòng)系統(tǒng)的動(dòng)力學(xué)研究[D];蘭州交通大學(xué);2015年

6 陶朝林;齒輪傳動(dòng)系統(tǒng)的動(dòng)態(tài)特性及參數(shù)合理匹配研究[D];蘭州交通大學(xué);2015年

7 李自強(qiáng);基于非線性自適應(yīng)濾波算法的齒輪傳動(dòng)系統(tǒng)振動(dòng)主動(dòng)控制研究[D];重慶大學(xué);2015年

8 梁亦棟;仿形秸稈粉碎還田機(jī)設(shè)計(jì)研究[D];山東理工大學(xué);2015年

9 羅鑫鑫;軌道車車軸齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性研究與分析[D];湘潭大學(xué);2015年

10 宋茂華;乘坐式高速插秧機(jī)后橋機(jī)構(gòu)的研究與設(shè)計(jì)[D];山東理工大學(xué);2015年



本文編號(hào):2505008

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2505008.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4cb6f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com