光電層合柔性板殼結(jié)構的智能主動振動控制研究
[Abstract]:In the field of aeronautics and astronautics, the shell structure has a wide application background, and its shape control and vibration control have been the key and difficult point in the system design and engineering application. At present, the method for suppressing the vibration by using the intelligent material to implement effective active excitation to the plate shell structure is an effective method. But the traditional intelligent material excited by the electric and magnetic signals needs to be added with a complex electromagnetic excitation device, which is not beneficial to the light miniaturization of the system, and meanwhile, a wire connection is required between the intelligent material and the excitation device, so that the electromagnetic noise interference can be easily caused, and the transmission accuracy and the real-time property of the control signal are influenced. The new type of modified lead titanate (PLZT) ceramic can directly convert light energy into mechanical energy, and is not affected by electromagnetic interference. It is suitable for non-contact excitation and remote control in space environment, and has wide application prospect. In this paper, based on the plate and shell structure of the layer-based telescopic PLZT driver, the intelligent vibration active control technology is studied, and its related drive configuration and dynamic modeling are studied. The problems of drive position optimization, single mode and multi-mode intelligent active control method are studied in this paper. The main work and innovative achievements of the paper are as follows: (1) Based on the light-thermal-force-electric multi-field coupling constitutive model of the PLZT driver, the main factors that influence the performance of the PLZT driver are analyzed by the numerical simulation method; and compared with the current common driver configuration, The analysis indicates that the current driver configuration is "can only be stretched and cannot be shortened" under the action of an external light source, and thus the one-way film control force can only be generated. Furthermore, two kinds of combined drive configurations which can produce positive and negative film control force are put forward, and the defects of the existing drive configuration are successfully overcome, and the configuration has obvious advantages in the active control of the curved shell structure, and can obviously improve the operation efficiency of the driver; (2) Based on the vibration theory of the plate-shell structure, a general-purpose dynamic model of the shell structure of the photovoltaic laminated plate which can be applied to the types of different structures and different geometric parameters is established, and different types of plate-shell structures such as rectangular plates, The system dynamics equation of the structure of the cylindrical shell, the spherical shell, the cone shell and the like is solved, and the mode control equation of the shell structure of the photoelectric laminated plate is established by means of the mode expansion technology based on the established kinetic model. (3) In combination with the characteristics of the PLZT driver switching and non-linear driving, the independent mode variable structure fuzzy controller is proposed. Compared with the conventional conventional Lyapunov control (constant light intensity control) and speed feedback control (variable light intensity control), the controller has two advantages: On the one hand, the optimal design of the switching function of the light direction is optimized, and the optimal illumination direction switching function is obtained; on the other hand, the self-adjusting fuzzy controller of the quantization factor is adopted for controlling the light intensity, and the driving characteristics of the driver are fully taken into account. The proposed controller has the advantages of fuzzy control and variable structure control. It is a kind of intelligent controller which does not depend on the precise model of the system, can overcome the nonlinear drive characteristic of the driver, and the control effect is obviously superior to the speed feedback control. (4) The variation law of the mode control factors of the corresponding controlled modes in the drive position is given in the paper. The results are as follows: for the determined mode, there are one or more extreme regions; in this region, And the amplitude of the mode control factor generated by the driver is obviously larger than that of the other patch areas, and the distribution of the extreme region can change as the mode half-wave number is changed. Further, in order to achieve the simultaneous suppression of the vibrations of the plurality of controlled modalities, it is necessary to attach the drive to a position capable of generating as large a modal factor as possible for all of the controlled modalities, for this purpose, The invention provides a multi-modal vibration driver position genetic optimization algorithm based on the sum of the absolute value of the controlled mode control force factor as an optimization function and the plate shell structure with the position coordinate of the driver as an optimization variable, And the drive position of the plate shell structure is optimized and designed in combination with the multi-piece combination driver configuration set forth herein, and the position of the driver in the corresponding driver configuration of the plate shell structure is calculated. (5) The optimal fuzzy active control algorithm is proposed for the multi-mode active control of the shell structure of the laminated plate. The algorithm is composed of the current mature LQR control and the fuzzy control, and the control of the structure and the control of the driver are taken into account during the design of the algorithm. The design step is divided into two steps: firstly, designing the LQR control law based on the simplified linear system model, and then adjusting the input light intensity of the photoelectric driver by the fuzzy controller to approximate the optimal control amount of the light-induced strain output by the photoelectric driver. The method solves the contradiction that the current photoelectric lamination system cannot directly apply the control method of the linear system, simplifies the design of the controller by decomposing a complex problem, and realizes the multi-mode active control of the shell structure of the photoelectric laminated plate. In this paper, the rationality of the multi-modal drive position optimization criterion function proposed in this paper is verified by simulation and comparison. (6) As a whole, two kinds of multi-mode active control algorithms such as fuzzy neural network control (FNNC) and self-organizing fuzzy sliding mode control (SOFSMC) are put forward. The proposed FNNC active control algorithm has the advantages of fuzzy control and neural network control. In order to simplify the system, the proposed fuzzy neural network is based on the RBF network and adopts two input single-output structures. However, in the multi-modal vibration problem, the number of control variables is more than the number of input of the controller, First, the first-order sliding mode function of each mode is formed by linear combination of the displacement of each controlled mode and their velocity signals, and then all the first-level sliding mode functions are linearly combined to form a two-level sliding mode function; and finally, the second-order sliding mode function and the derivative thereof are used as input variables of the FNNC. The proposed FNNC active controller does not rely on the mathematical model of the system, and has the online learning ability of the fuzzy rule and the membership function. (7) The proposed SOFSMC active vibration control algorithm reduces the control order of the system by introducing the two-stage sliding mode function, simplifies the structure of the fuzzy control system, and realizes on-line learning of the controller rule by introducing the self-organizing learning algorithm, The defect that the conventional fuzzy sliding mode controller relies on the system rule is overcome, the use of the fuzzy sliding mode in the system control is flexible to control the signal, the chattering phenomenon of the general sliding mode control is avoided, and the single-value fuzzy rule parameter is adopted, this single-valued fuzzy rule parameter can be automatically adjusted by the self-organizing learning algorithm; the self-organizing learning algorithm used is not the same as the currently reported document, Which is a new self-organizing learning algorithm based on the linear self-regression smoothing model of the multi-modal vibration system of the photoelectric laminated structure. In order to verify the effectiveness of the proposed intelligent active control algorithm, the multi-modal active control example of the plate-shell structure is simulated.
【學位授予單位】:南京航空航天大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TB535.1
【相似文獻】
相關期刊論文 前10條
1 劉耦耕;淺論模糊控制[J];湖南大學學報(自然科學版);2002年S2期
2 蘇興,孫錫紅;節(jié)水型淋浴器中的模糊控制設計[J];電子技術;2005年06期
3 王建軍;韓進宏;;采用模糊控制的某航空導彈俯仰舵機模糊控制器的設計與軟件編程[J];山東理工大學學報(自然科學版);2006年02期
4 郭亞軍;彭天好;王菁;;模糊控制在液壓系統(tǒng)中的應用及發(fā)展[J];液壓與氣動;2007年06期
5 葛新成;胡永霞;;模糊控制的現(xiàn)狀與發(fā)展概述[J];現(xiàn)代防御技術;2008年03期
6 徐英雷;李群湛;;模糊控制在直接轉(zhuǎn)矩控制系統(tǒng)中的應用研究[J];內(nèi)燃機車;2009年08期
7 翟曉燁;齊劍玲;徐惠勇;;模糊控制在泵房的應用[J];硅谷;2010年02期
8 張曙;鄭婕;;模糊控制[J];硅谷;2012年06期
9 凌默儂;;模糊控制的未來發(fā)展趨勢[J];工業(yè)儀表與自動化裝置;1991年04期
10 馬訓鳴;何鉞;;異型加工的模糊控制[J];機械與電子;1992年05期
相關會議論文 前10條
1 周志堅;史學良;;模糊控制在氧化鋁蒸發(fā)工藝中的研究與應用[A];全國冶金自動化信息網(wǎng)2009年會論文集[C];2009年
2 高軍偉;蔡國強;紀志堅;秦勇;賈利民;;三級倒立擺的自適應神經(jīng)模糊控制(英文)[A];2009年中國智能自動化會議論文集(第八分冊)[控制理論與應用(?[C];2009年
3 劉智勇;阮太元;李燁;;模糊控制在靜電除塵領域中的應用[A];中國自動化學會中南六省(區(qū))2010年第28屆年會·論文集[C];2010年
4 劉沛;王學智;;模糊控制的一種方便實現(xiàn)[A];1996年中國智能自動化學術會議論文集(上冊)[C];1996年
5 袁鑄鋼;江海鷹;王孝紅;孟慶金;高云深;;水泥立窯偏火的模糊控制[A];1996年中國智能自動化學術會議論文集(上冊)[C];1996年
6 柴景武;王建農(nóng);;鍋爐溫度的模糊控制[A];1998年中國智能自動化學術會議論文集(上冊)[C];1998年
7 孫烈英;;模糊控制過程中參數(shù)自調(diào)整的方法[A];1995中國控制與決策學術年會論文集[C];1995年
8 章海清;吳慶憲;;提高模糊控制品質(zhì)的一種方法[A];第三屆全國控制與決策系統(tǒng)學術會議論文集[C];1991年
9 劉向杰;彭一民;周孝信;;模糊控制在熱工控制中的應用現(xiàn)狀及前景[A];1998年中國控制會議論文集[C];1998年
10 盛萬興;戴汝為;;模糊控制的集成優(yōu)化[A];1997中國控制與決策學術年會論文集[C];1997年
相關重要報紙文章 前6條
1 河南 孟憲坤;發(fā)射機相關電機控制系統(tǒng)的模糊控制設計與實現(xiàn)[N];電子報;2013年
2 張國宏;水泥回轉(zhuǎn)窯模糊控制集散系統(tǒng)通過鑒定[N];中國建材報;2001年
3 北京 閆飛;FZ-750A智能模糊控制電飯鍋電路及工作電路[N];電子報;2004年
4 安徽 潘樹榮;三源牌模糊控制電飯鍋原理及檢修[N];電子報;2005年
5 本報記者 秦可;金洲科瑞:在模糊控制中實現(xiàn)精確節(jié)能[N];中國工業(yè)報;2007年
6 張寶;洗滌技術的重大突破[N];中國企業(yè)報;2000年
相關博士學位論文 前10條
1 賀容波;光電層合柔性板殼結(jié)構的智能主動振動控制研究[D];南京航空航天大學;2015年
2 彭勇剛;模糊控制工程應用若干問題研究[D];浙江大學;2008年
3 莫巨華;基于模糊控制的最優(yōu)生產(chǎn)存儲控制策略研究[D];東北大學 ;2009年
4 張憲霞;空間分布動態(tài)系統(tǒng)的3-D模糊控制設計與分析[D];上海交通大學;2008年
5 李廣軍;列車橫向懸掛控制策略研究[D];西南交通大學;2013年
6 魏新江;非線性時滯系統(tǒng)模糊控制的研究[D];東北大學;2005年
7 朱軍;種豬數(shù)字化養(yǎng)殖平臺的系統(tǒng)集成與應用研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2010年
8 梁偉平;球磨機制粉系統(tǒng)智能控制算法的研究及應用[D];華北電力大學;2000年
9 陳志盛;基于LMI的非線性時滯系統(tǒng)的魯棒模糊控制與濾波研究[D];中南大學;2005年
10 劉曉華;非線性系統(tǒng)模糊控制研究[D];大連理工大學;2002年
相關碩士學位論文 前10條
1 溫文波;模糊控制在漁輪釣機中的應用研究[D];浙江大學;2002年
2 王小紅;基于模糊控制和神經(jīng)網(wǎng)絡控制的麻醉靶控輸注研究[D];華南理工大學;2015年
3 任可佳;基于自適應的模糊PID的艾薩爐溫度控制研究[D];昆明理工大學;2015年
4 申孟亞;基于LabVIEW的焊錫真空爐粗錫質(zhì)量的軟測量與模糊控制研究[D];昆明理工大學;2015年
5 姚然;基于PLC模糊控制的小型花卉玻璃溫室溫度控制[D];昆明理工大學;2015年
6 冀國郡;基于模糊控制的具有超級電容的節(jié)能電梯的控制策略的研究[D];天津理工大學;2015年
7 龐飛龍;基于遺傳算法的模糊控制送絲系統(tǒng)[D];中國地質(zhì)大學(北京);2015年
8 王敏;城市主干道過飽和交叉口交通信號控制方法研究[D];長安大學;2015年
9 胡翠;水閘液壓啟閉設備電氣控制系統(tǒng)的研究[D];五邑大學;2015年
10 涂永航;變轉(zhuǎn)速液壓動力源恒流量模糊控制方法研究[D];長安大學;2015年
,本文編號:2485548
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2485548.html