基于迭代學(xué)習(xí)控制的柔性結(jié)構(gòu)振動(dòng)控制設(shè)計(jì)與研究
[Abstract]:Compared with rigid structure, flexible structure is light, flexible and low consumption, and is widely used in aerospace, marine riser, robot and other engineering fields. However, in the actual engineering environment, external interference often leads to the vibration of flexible structures, thus shortening the service life, which will lead to the paralysis of the system in serious cases. In the process of designing the controller, the observer and actuator will have nonlinear cases such as amplitude limitation and output delay. If these nonlinear characteristics are ignored, the instability of flexible structure system will also be caused. In this paper, two kinds of nonlinear inputs and four kinds of flexible structures are considered, in which the flexible string system is the most basic and the simplest flexible structure system, which can be represented by a second-order wave equation. In flexible string system, two saturation functions are used to deal with restricted input. Flexible Bernoulli-Euler beam is a fourth-order system of higher order partial differential equations, in which hyperbolic tangent function and saturation function are used to deal with restricted input. The flexible manipulator system with limited input is a rotating Bernoulli Euler beam system, which is a flexible structure system coupled with transverse vibration and rotation. In comparison, the flexible Timoxinke beam system with backlash input is the most complex, which involves the transverse vibration and the rotation of its cross section. With the improvement of the complexity of the system environment and the accuracy of the control target, a single control method can not meet the needs of the control process perfectly. In the face of distributed parameter systems with infinite degrees of freedom, restricted input, backlash input, distributed interference and boundary interference, single boundary control, adaptive control and iterative learning control can not achieve the progressive stability of the closed-loop system. In this paper, a double ring coupling iterative learning method is used, that is, a learning ring as a secondary ring is embedded in a control ring as a main ring. In this paper, the boundary iterative learning controller with double loop coupling and the adaptive iterative learning controller with double loop coupling are designed. In these two kinds of controllers, the secondary loop is essentially a typical D-type iterative learning control rate, mainly to suppress the vibration of the system and ensure the nonlinear characteristics of the controller. In the double-loop coupled boundary iterative learning controller, the main loop is essentially a boundary control rule, mainly through the feedback of the state of the system to suppress distributed interference and boundary interference. In the adaptive iterative learning controller with double loop coupling, the main loop is mainly composed of observer and system state feedback signal. By defining the compound energy function, the bounded property of the closed-loop system in each iterative period and the convergence on the iterative axis are proved in this paper. In order to show the performance of the closed-loop system and the effectiveness of the designed controller, MATLAB digital simulation and manipulator experiments are carried out in this paper. In the digital simulation, the open loop system under uncontrolled external force and the closed loop system under the designed controller are compared in this paper. In the manipulator experiment, the open-loop system under uncontrolled control, the closed-loop system under PD control and the closed-loop system under double-loop coupled iterative learning control are compared in this paper.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翁軒;楊龍剛;劉嶼;趙志甲;鄔依林;;具有邊界擾動(dòng)柔性機(jī)械臂的魯棒自適應(yīng)邊界控制[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
2 馬艷龍;李映輝;;求解變截面梁振動(dòng)特性的假設(shè)模態(tài)法[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2015年04期
3 馬天兵;杜菲;;基于飽和補(bǔ)償控制器的壁板結(jié)構(gòu)振動(dòng)控制[J];振動(dòng)與沖擊;2014年06期
4 GAO Yan;WU HuaiNing;WANG JunWei;GUO Lei;;Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles[J];Science China(Information Sciences);2014年03期
5 張志新;胡振東;;考慮彈丸與身管軸向運(yùn)動(dòng)耦合的火炮系統(tǒng)時(shí)變動(dòng)力學(xué)分析[J];振動(dòng)與沖擊;2013年20期
6 鄔依林;劉嶼;吳忻生;;基于時(shí)變內(nèi)流的柔性立管自適應(yīng)邊界控制[J];控制理論與應(yīng)用;2013年05期
7 鄔依林;劉嶼;;分布參數(shù)柔性梁的建模與振動(dòng)邊界控制[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
8 劉嶼;黃浩維;鄔依林;吳忻生;;基于Lyapunov直接法的柔性梁振動(dòng)控制[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
9 尹維龍;田東奎;;柔性翼型的氣動(dòng)彈性建模與顫振特性分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2012年09期
10 朱勝;孫明軒;何熊熊;;輸入具有齒隙非線性特性的周期系統(tǒng)的自適應(yīng)控制[J];控制理論與應(yīng)用;2012年04期
相關(guān)會(huì)議論文 前1條
1 李茂濤;陳力;;驅(qū)動(dòng)力矩受限情況下漂浮基空間機(jī)械臂基于飽和反正切函數(shù)的關(guān)節(jié)空間軌跡跟蹤控制[A];第三屆海峽兩岸動(dòng)力學(xué)、振動(dòng)與控制學(xué)術(shù)會(huì)議論文摘要集[C];2013年
相關(guān)碩士學(xué)位論文 前2條
1 劉萌萌;旋轉(zhuǎn)式太陽帆姿態(tài)動(dòng)力學(xué)建模與控制[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
2 劉杰;柔性機(jī)械臂的擴(kuò)展基函數(shù)迭代學(xué)習(xí)控制[D];浙江大學(xué);2010年
,本文編號(hào):2475125
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2475125.html