非共沸混合制冷劑低溫制冷系統(tǒng)優(yōu)化及換熱特性研究
[Abstract]:In the field of natural gas liquefaction industry, non-azeotropic mixture cryogenic refrigeration technology is widely used, in which plate-finned heat exchanger is mainly used in the cold box of small and medium-sized natural gas liquefaction process. The temperature slip of working fluid heat transfer in cold box is large, which can reach about 200 擄C. In the low temperature evaporation section, the dryness of the mixed refrigerating fluid is low and the flow rate is slow, especially under the condition of low liquefaction load of natural gas, the heat transfer performance of the heat exchanger decreases. However, the theoretical and experimental research on the heat transfer and liquid phase accumulation of plate-wing heat exchanger under this condition is still lacking. In order to study the heat transfer performance of low temperature and low dryness mixed working fluid in plate-wing heat exchanger and establish a theoretical prediction model with practical reference value, a set of plate-wing heat exchanger is built in this paper. Using a mixture (N2 CH4 C2H4 C3H8 iC4H10) similar to that used in a natural gas liquefaction process as a refrigerant and a cryogenic refrigeration system driven by a commercial scroll compressor, on the premise of obtaining a minimum temperature of-160C, The heat transfer performance of low dryness and low velocity mixed working fluid in plate-finned heat exchanger was studied. At the same time, the correlation of condensation and boiling heat transfer of mixed working fluid is studied by scholars at home and abroad. Based on the heat transfer unit model, the total heat transfer coefficient of plate-finned heat exchanger is predicted theoretically, and the results are compared with the experimental results. Based on the experimental data, part of the correlation is modified. On this basis, the optimal design of plate-wing heat exchanger applied to natural gas liquefaction process is improved, and the genetic algorithm is adopted, and the unit entropy increase is taken as the objective function. The pressure drop of cold and hot flow is used as the constraint condition to optimize the channel and finned parameters of the plate-finned heat exchanger, and the improvement direction of the design of the plate-finned heat exchanger is put forward. The heat transfer characteristics of the mixed working fluid are closely related to the flow characteristics. The liquid phase accumulation of the working fluid in the system not only affects the heat transfer performance of the heat exchanger, but also affects the circulating concentration of the mixed working fluid, and the overall performance of the system is also changed. Therefore, the cooling characteristics in the low temperature refrigeration cycle of mixed working fluid, the temperature difference of cold and heat flow in the regenerator, the load change of the heat exchanger and the liquid phase accumulation are analyzed and discussed in this paper. In addition, based on the one-dimensional vertical flow equation of mixed working fluid, the mathematical model of liquid phase accumulation of mixed working fluid in low temperature refrigeration system is established, and the liquid phase accumulation characteristics of mixed working fluid in low temperature refrigeration cycle are analyzed and discussed. And the variation of the concentration of mixed working fluid cycle with the cooling process. The circulating concentration of mixed working fluid in natural gas liquefaction process plays an important role in the efficiency and stable operation of the system. However, it is difficult to adjust the operating cycle concentration to be consistent with the optimized concentration in the actual operation process. Through the optimization of SMR liquefaction process, it is found that the cycle concentration of different mixtures can be obtained by optimizing the mixture under the premise of system (exergy) efficiency as the objective function. At the same time, the temperature difference matching in the heat exchanger is uniform and reasonable when the exergy efficiency is higher than 0.4. In addition, under the condition of different pre-cooling temperature and high and low pressure of the system, the optimized cycle concentration can keep the system running efficiently, which indicates that the concentration ratio of the mixture has strong robustness in the natural gas liquefaction process. In addition, this paper puts forward the adjustment scheme of SMR liquefaction process, which has certain reference value in practical engineering application.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TB657
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋春元;;板翅式換熱器的技術(shù)進(jìn)展[J];化工設(shè)計(jì)通訊;2008年04期
2 張志強(qiáng);季益忠;杜克鏞;韓冬冬;;板翅式換熱器真空干燥裝置的研制[J];干燥技術(shù)與設(shè)備;2010年02期
3 張愛民;;板翅式換熱器應(yīng)用研究[J];河南科技;2010年16期
4 修維紅;吳曉紅;倪利剛;劉孝根;彭小敏;程沛;;板翅式換熱器有限元計(jì)算及分析[J];石油和化工設(shè)備;2012年05期
5 王燕平;徐建忠;毛央平;;板翅式換熱器的發(fā)展現(xiàn)狀及趨勢[J];杭氧科技;2012年04期
6 ;發(fā)言材料之一:四個(gè)月來板翅式換熱器攻關(guān)情況[J];深冷簡報(bào);1972年S3期
7 ;發(fā)言材料之二:目前板翅式換熱器生產(chǎn)中幾個(gè)問題的看法[J];深冷簡報(bào);1972年S3期
8 ;板翅式換熱器釬接測溫試驗(yàn)小結(jié)[J];深冷簡報(bào);1972年S3期
9 ;板翅式換熱器[J];化工與通用機(jī)械;1972年Z1期
10 杭氧研究所情報(bào)組;《國外空分設(shè)備鋁制板翅式換熱器》即將出版[J];深冷簡報(bào);1973年04期
相關(guān)會議論文 前10條
1 張哲;厲彥忠;許箐;;板翅式換熱器物流分配的研究概述[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
2 修維紅;吳曉紅;倪利剛;劉孝根;彭小敏;程沛;;板翅式換熱器有限元計(jì)算[A];全國第四屆換熱器學(xué)術(shù)會議論文集[C];2011年
3 王方方;關(guān)欣;蔡康;崔國民;;板翅式換熱器動態(tài)設(shè)計(jì)研究[A];中國化工學(xué)會2008年石油化工學(xué)術(shù)年會暨北京化工研究院建院50周年學(xué)術(shù)報(bào)告會論文集[C];2008年
4 石景禎;崔曉鈺;胡忠霞;;板翅式換熱器的多目標(biāo)優(yōu)化設(shè)計(jì)[A];中國動力工程學(xué)會第三屆青年學(xué)術(shù)年會論文集[C];2005年
5 毛央平;毛紹融;;強(qiáng)化板翅式換熱器傳熱的有效途徑[A];2006年大型空分設(shè)備技術(shù)交流會論文集[C];2006年
6 李相發(fā);姜周曙;江愛朋;吳筱駿;王劍;;大型板翅式換熱器氣阻特性測控系統(tǒng)的開發(fā)[A];中國自動化學(xué)會控制理論專業(yè)委員會B卷[C];2011年
7 文鍵;厲彥忠;周愛民;;板翅式換熱器換熱性能的改進(jìn)研究[A];2006年大型空分設(shè)備技術(shù)交流會論文集[C];2006年
8 文鍵;厲彥忠;;改善板翅式換熱器封頭流場分布的一種措施[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
9 米廷燦;厲彥忠;;板翅式換熱器矩形通道二次表面換熱性能理論計(jì)算[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
10 張小松;趙開濤;李舒宏;陳季明;;鋁制板翅式換熱器的傳熱與阻力特性的試驗(yàn)研究[A];全國暖通空調(diào)制冷1998年學(xué)術(shù)年會論文集(2)[C];1998年
相關(guān)重要報(bào)紙文章 前4條
1 江莉;新型板翅式換熱器高效節(jié)能[N];中國化工報(bào);2009年
2 婁蓉;杭氧制成國內(nèi)首臺高低壓一體板翅式換熱器[N];中國工業(yè)報(bào);2014年
3 楊挺 方怡;亞洲最大真空釬接爐在杭氧投用[N];中國石化報(bào);2003年
4 楊挺 方怡;亞洲大型真空釬接爐在杭氧投用[N];中國化工報(bào);2003年
相關(guān)博士學(xué)位論文 前3條
1 李俊;機(jī)載多股流板翅式換熱器性能研究[D];南京航空航天大學(xué);2015年
2 曹樂;非共沸混合制冷劑低溫制冷系統(tǒng)優(yōu)化及換熱特性研究[D];華南理工大學(xué);2016年
3 張哲;板翅式換熱器物流分配特性及換熱的研究[D];西安交通大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 王飛;板翅式換熱器性能實(shí)驗(yàn)研究[D];大連海事大學(xué);2011年
2 羅明輝;模塊化分子篩吸附器與板翅式換熱器芯體內(nèi)氣流分布特性研究[D];華中科技大學(xué);2014年
3 黃超進(jìn);板翅式換熱器物流分配特性研究[D];上海交通大學(xué);2010年
4 張振生;基于復(fù)合形法的板翅式換熱器優(yōu)化設(shè)計(jì)研究[D];安徽工業(yè)大學(xué);2011年
5 董軍啟;板翅式換熱器傳熱特性研究[D];大連海事大學(xué);2004年
6 張衛(wèi)星;板翅式換熱器的性能分析與實(shí)驗(yàn)研究[D];華中科技大學(xué);2006年
7 賀鵬程;工質(zhì)熱物性變化下的板翅式換熱器計(jì)算研究[D];南京航空航天大學(xué);2009年
8 石小闖;基于模擬退火算法的板翅式換熱器優(yōu)化設(shè)計(jì)[D];華東理工大學(xué);2012年
9 胡云云;遺傳算法優(yōu)化多股流板翅式換熱器通道排列[D];大連理工大學(xué);2012年
10 王坤;小型MRC天然氣液化裝置板翅換熱器動態(tài)特性仿真研究[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號:2474947
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2474947.html