數(shù)字高程(DEM)差異性檢測及校驗方法研究
[Abstract]:The difference of digital elevation data can be divided into subjective data error and objective data error, in which subjective data error refers to man-made replacement of key regional data, and objective data error refers to gross error in surveying. In practical application, the difference of data will bring great influence to scientific research and application. The purpose of this paper is to obtain the expression of the difference between different digital elevations, and to provide the basis for judging the error of DEM. ASTER GDEM (Advanced Spaceborne Heat Emission and reflection Radiometer Global Digital elevation Model) is by far the most widely covered. The digital elevation data provided to users free of charge has a good present situation and has become an important data source in the fields of scientific research and geological application. In this paper, ASTER GDEM is taken as the test case, and the DLR DEM data obtained by German space agency is taken as the assumed true value. The main research methods are as follows: firstly, with the help of the idea of remote sensing image matching, the combination of SURF algorithm and RANSAC algorithm is used for image matching, and the precision of image matching is guaranteed on the premise of inheriting the advantages of SURF algorithm. According to the transverse and longitudinal coordinates of the matching characteristic points, the horizontal deviation is calculated and the three-dimensional diagram of the longitude and latitude offset between ASTER GDEM and DLR DEM is drawn. The second is to use GIS professional software ArcGis to realize the extraction and optimization of small range of feature points, and to match the extracted feature points according to the position relationship between the generated contour lines and feature points, and to calculate the horizontal distance of paired feature points. Import matlab to implement the ASTER GDEM relative to DLR DEM horizontal offset representation. The experimental results show that: (1) the mismatched feature points can be removed successfully after purification of RANSAC algorithm. The results of image matching based on SURF algorithm and RANSAC algorithm are more accurate. (2) the horizontal offset of ASTER GDEM relative to DLR DEM can be seen by comparing the two methods. The ratio of horizontal offset between 0 ~ 30m and 30m-60m is similar to that of the two methods, and the number of feature points extracted by the method based on image matching algorithm is smaller, and the maximum deviation is larger. The matching point obtained by the method of extracting mountain vertices by ArcGis and manually matching is more accurate, but because of the large workload of manual matching, it is not suitable for large experimental areas.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP751
【相似文獻】
相關(guān)期刊論文 前10條
1 劉斌;楊小平;任涵文;趙亞平;;基于圖像匹配的自動點膠系統(tǒng)[J];機械設(shè)計與制造;2007年09期
2 王琪;李言俊;張科;;具有距離不變性與角度不變性的圖像匹配研究[J];火力與指揮控制;2008年04期
3 鄒建成;趙占軍;;基于突變理論的圖像匹配[J];北方工業(yè)大學(xué)學(xué)報;2010年01期
4 李壯;楊夏;雷志輝;;基于空間子區(qū)一致性的異源圖像匹配方法[J];國防科技大學(xué)學(xué)報;2011年01期
5 張家軍,張莉,賀安之;基于光學(xué)異或邏輯的圖像匹配[J];光學(xué)學(xué)報;1993年03期
6 桂志國,薄瑞峰,韓焱;基于投影特征的圖像匹配的快速算法[J];測試技術(shù)學(xué)報;2000年01期
7 徐寒凌,楊杰,鄧志鵬;基于圖像匹配品質(zhì)評價的航跡規(guī)劃[J];上海交通大學(xué)學(xué)報;2001年09期
8 鄭軍,諸靜;基于自適應(yīng)遺傳算法的圖像匹配[J];浙江大學(xué)學(xué)報(工學(xué)版);2003年06期
9 徐政 ,張純學(xué);自動光電/紅外傳感器圖像匹配[J];飛航導(dǎo)彈;2005年05期
10 熊凌;;計算機視覺中的圖像匹配綜述[J];湖北工業(yè)大學(xué)學(xué)報;2006年03期
相關(guān)會議論文 前10條
1 徐煒;賀占莊;黃士坦;;基于模糊相似計算的快速圖像匹配[A];第16屆中國過程控制學(xué)術(shù)年會暨第4屆全國故障診斷與安全性學(xué)術(shù)會議論文集[C];2005年
2 蔣大林;李琳;;圖像匹配技術(shù)的研究[A];全國第19屆計算機技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集(上冊)[C];2008年
3 石鴻雁;貝肇宇;;基于蟻群算法的圖像匹配方法[A];2009中國控制與決策會議論文集(3)[C];2009年
4 徐煒;黃士坦;賀占莊;;基于免疫克隆選擇算法的快速圖像匹配[A];第十二屆全國信號處理學(xué)術(shù)年會(CCSP-2005)論文集[C];2005年
5 牛毅菲;汪渤;苗常青;;圖像匹配方法研究[A];《制造業(yè)自動化與網(wǎng)絡(luò)化制造》學(xué)術(shù)交流會論文集[C];2004年
6 牛毅菲;汪渤;苗常青;;圖像匹配方法研究[A];先進制造技術(shù)論壇暨第三屆制造業(yè)自動化與信息化技術(shù)交流會論文集[C];2004年
7 熊凌;;計算機視覺中的圖像匹配綜述[A];12省區(qū)市機械工程學(xué)會2006年學(xué)術(shù)年會湖北省論文集[C];2006年
8 唐榕;蔣大林;丁學(xué)爽;;基于角點檢測的圖像匹配方法綜述[A];全國第二屆信號處理與應(yīng)用學(xué)術(shù)會議專刊[C];2008年
9 馬苗;鹿艷晶;;基于灰色理論和遺傳算法的快速圖像匹配方法[A];第16屆全國灰色系統(tǒng)學(xué)術(shù)會議論文集[C];2008年
10 繆君;儲s,
本文編號:2470755
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2470755.html