基于雙目視覺的結(jié)構(gòu)試件位移角點(diǎn)檢測方法研究
[Abstract]:Through the shaking table experiment, we can study the vibration displacement and other information of the structural specimen. The seismic performance is obtained by analyzing the displacement information. The movement parameters such as displacement, velocity, acceleration, deflection and so on are the data to be obtained by testing the characteristic points of the structural specimens as the special points of the object test. The emphasis of this paper is to detect the displacement change of the characteristic points and to judge the deformation of the structural specimen by analyzing the curve of the displacement change. This paper mainly studies the present situation and development trend of the application of visual technology in structural displacement detection. In this paper, the basic theory of displacement detection in shaking table test is understood, including the imaging principle of digital image, the form and characteristics of digital image, the coordinate system involved in the measurement work of the image, and the related algorithm of image pre-processing. Target location and camera calibration algorithm. An algorithm based on binocular stereo vision for measuring the displacement of structural specimen in shaking table test is presented and the key technology of the algorithm is studied in detail. The core contents of this paper are as follows: 1) the calibration algorithm based on circular array is used to calibrate the system. 2) through color space conversion and Hough transform to detect straight line, the detection rate of straight line is reduced. 2) the calibration board based on circular array and Zhang's calibration algorithm are used to calibrate the system. Then the feature points of the image are obtained according to the Harris corner detection algorithm, and the number and quality of the corners are controlled by the control threshold. 3) in this paper, the constraint conditions of feature point matching and the sift feature descriptor are studied. Two-way matching algorithm based on polar constraint is used for experimental matching, and good results are obtained. The principle of measuring displacement with binocular vision is studied. It is applied to the displacement detection of structural specimens. This paper focuses on the calibration of binocular vision system, the detection and matching of feature points. The feasibility of the proposed algorithm is verified by the static test. Then the dynamic displacement curve of the structural specimen is obtained by applying the algorithm to the dynamic test of the vibration table. In view of the measurement method proposed in this paper, the corresponding dynamic and static experimental schemes are designed, and the experiments are carried out in the shaking table laboratory of our school. First of all, the feasibility and accuracy of this algorithm are verified by static test. Then the sinusoidal excitation experiment is carried out and the displacement of the characteristic points of the structural specimen is calculated by this algorithm. The displacement curve obtained is basically consistent with the changing trend of the sinusoidal excitation signal.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TB534.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金兆楠;;Zernike矩的圓陣列靶標(biāo)特征點(diǎn)精確提取方法[J];山西電子技術(shù);2015年04期
2 于合龍;劉浩洋;蘇恒強(qiáng);;基于光流追蹤技術(shù)的變形位移測量方法[J];吉林大學(xué)學(xué)報(理學(xué)版);2014年02期
3 季云峰;;結(jié)構(gòu)動位移測試的計(jì)算機(jī)視覺方法實(shí)現(xiàn)[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2013年11期
4 趙薇;陸余恬;;基于自適應(yīng)算法的去噪濾波仿真比較[J];中國傳媒大學(xué)學(xué)報(自然科學(xué)版);2013年04期
5 王民;劉偉光;;基于改進(jìn)SIFT特征的雙目圖像匹配算法[J];計(jì)算機(jī)工程與應(yīng)用;2013年02期
6 蘇恒強(qiáng);馮雪;于合龍;賈晶敏;汪巖;;基于Harris角點(diǎn)檢測的位移測量算法[J];實(shí)驗(yàn)力學(xué);2012年01期
7 田國偉;韓曉健;徐秀麗;劉偉慶;;基于視頻圖像處理技術(shù)的振動臺試驗(yàn)動態(tài)位移測量方法[J];世界地震工程;2011年03期
8 張子淼;王鵬;孫長庫;;單目視覺位姿測量方法及數(shù)字仿真[J];天津大學(xué)學(xué)報;2011年05期
9 方莉;張萍;;經(jīng)典圖像去噪算法研究綜述[J];工業(yè)控制計(jì)算機(jī);2010年11期
10 孔軍;湯心溢;蔣敏;;多尺度特征提取的雙目視覺匹配[J];計(jì)算機(jī)工程與應(yīng)用;2010年33期
相關(guān)碩士學(xué)位論文 前4條
1 陳運(yùn)貴;利用數(shù)字圖像處理技術(shù)監(jiān)測隧道變形的探索研究[D];廣東工業(yè)大學(xué);2014年
2 肖鋒;基于數(shù)字圖像處理技術(shù)的建筑裂縫監(jiān)測研究[D];重慶大學(xué);2013年
3 康晶;基于立體視覺攝像機(jī)標(biāo)定方法的三維重建技術(shù)研究[D];湖南大學(xué);2006年
4 董輝;馬桑溪長江大橋變形動態(tài)監(jiān)測系統(tǒng)研究[D];重慶大學(xué);2004年
,本文編號:2448780
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2448780.html