基于蟻群優(yōu)化的遙感影像分類研究
[Abstract]:The research direction of this paper is remote sensing image classification based on ant colony optimization data classification rule mining. Generally speaking, it is discussed from three aspects. Firstly, the general methods and characteristics of remote sensing image classification are discussed. Thirdly, the basic principle and mathematical model of ant colony optimization as well as the algorithm flow are discussed. Finally, the problem that ant colony optimization is applied to remote sensing image classification is solved. As for the classification of remote sensing images, the latest Landsat-8 data are used. The problems such as texture transformation, vegetation transformation, principal component analysis, independent component analysis, terrain factor extraction and multi-band optimal index factor extraction are discussed. The features including spectrum, remote sensing index, texture, terrain and linear transformation are combined into a multi-band file as the initial feature set of classification, and their feature selection scheme is given. Regarding ant colony optimization, taking double-bridge experiment as an example, this paper discusses traveling salesman problem, ant colony optimization principle of data mining, mathematical model and algorithm flow, and mainly introduces Ant-Miner model, on the basis of summarizing the general frame of ant colony optimization, Introduce a new improved scheme. Combining remote sensing image classification with ant colony optimization, the solutions of data discretization, rule construction, regular pruning, pheromone strategy and heuristic strategy are discussed in detail. Finally, an example is given to compare the classification results based on ant colony optimization method and maximum likelihood method, and the conclusion is drawn.
【學位授予單位】:安徽理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TP751;TP18
【參考文獻】
相關期刊論文 前10條
1 琚存勇;蔡體久;馮仲科;;基于數(shù)學形態(tài)學和最大似然法的遙感圖像分類研究[J];北京林業(yè)大學學報;2005年S2期
2 李百壽;秦其明;許軍強;張萬峰;姚云軍;;遙感圖像線性影紋理解專家系統(tǒng)設計與實現(xiàn)[J];測繪科學;2008年02期
3 黃明;吳延斌;;基于混沌遺傳算法的遙感影像分類[J];測繪科學;2011年02期
4 戴芹;劉建波;;基于蟻群規(guī)則挖掘算法的多特征遙感數(shù)據(jù)分類[J];地理研究;2009年04期
5 肖鵬峰,劉順喜,馮學智,趙書河,趙萍;中分辨率遙感圖像土地利用與覆被分類的方法及精度評價[J];國土資源遙感;2004年04期
6 賈坤;李強子;田亦陳;吳炳方;;遙感影像分類方法研究進展[J];光譜學與光譜分析;2011年10期
7 曹敏;史照良;陽建逸;;蜂群智能算法的遙感影像分類方法[J];測繪學報;2013年05期
8 謝宏,程浩忠,牛東曉;基于信息熵的粗糙集連續(xù)屬性離散化算法[J];計算機學報;2005年09期
9 詹士昌,徐婕,吳俊;蟻群算法中有關算法參數(shù)的最優(yōu)選擇[J];科技通報;2003年05期
10 宋傳中,朱光,劉國生,牛漫蘭;淮南煤田的構造厘定及動力學控制[J];煤田地質(zhì)與勘探;2005年01期
相關博士學位論文 前1條
1 周爽;蟻群算法在高光譜圖像降維和分類中的應用研究[D];哈爾濱工業(yè)大學;2010年
,本文編號:2444763
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2444763.html