全色遙感影像地物信息自動(dòng)分類(lèi)方法研究
[Abstract]:With the rapid development of China's economy, the development of urbanization policy is being carried out intensively, so the demand for land resources is also increasing. Using remote sensing images to classify and extract typical urban features has become a mainstream trend. It is one of the most important research topics to use appropriate algorithms to extract urban typical features with high accuracy. In this paper, "Jilin No. 1" optical A-star panchromatic remote sensing image is used to classify and extract four typical features of buildings, roads, woodlands and grasslands in the region using pixel-based and object-oriented classification methods. The main works are as follows: (1) for pixel-based classification methods, the minimum distance method, maximum likelihood method, BP neural network method, support vector product method, ISODATA algorithm and K-means algorithm for supervised classification are mainly studied. (2) for the object-oriented classification method, according to the spectral, shape and texture features of the image, the segmentation technology based on Sobel edge operator and the segmentation-fusion algorithm based on Full Lambda-Schedule are used to segment the image. Thirdly, the classification accuracy evaluation method of confusion matrix is studied. According to the classification results of each algorithm, the overall classification accuracy is used, and the fuzzy classification method is used to set up the information extraction rules. (3) the classification accuracy evaluation method of the confusion matrix is studied, and the overall classification accuracy is used for each algorithm. The Kappa coefficient is used to evaluate the overall classification accuracy. The classification accuracy of single-class ground objects is evaluated by using three indexes, namely, the error of classification, the error of missing classification and the index of success of one-class classification. The experimental results and data show that for pixel-based classification methods, the most accurate classification method is the maximum likelihood method in supervised classification, the overall classification accuracy is 83.868%, the Kappa coefficient is 0.7561, for roads, buildings, The single classification accuracy of the maximum likelihood method is the highest when the three kinds of ground objects are extracted, and the classification accuracy of the support vector product method is the highest when the forest land is extracted by the single class method. For the object-oriented classification method, the overall classification accuracy is 94.4721%, and the Kappa coefficient is 0.903. On the whole, the classification accuracy of object-oriented method is higher than that of pixel-based method. The research results of this paper have a very important guiding significance for the development of urbanization in Changchun, and the classification and processing of the images acquired by Jilin 1 satellite also play a guiding role in the classification of the images obtained by Jilin 1 satellite.
【學(xué)位授予單位】:長(zhǎng)春理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊朝斌;張樹(shù)文;卜坤;于靈雪;顏鳳芹;常麗萍;楊久春;;高分辨率遙感影像在城市LUCC中的應(yīng)用[J];中國(guó)科學(xué)院大學(xué)學(xué)報(bào);2016年03期
2 農(nóng)麗萍;;淺談遙感技術(shù)在地理國(guó)情普查中的應(yīng)用[J];科技展望;2016年10期
3 張瑩;;遙感影像監(jiān)督分類(lèi)和非監(jiān)督分類(lèi)方法探討[J];黑龍江科技信息;2016年02期
4 張召才;;吉林一號(hào)衛(wèi)星組星[J];衛(wèi)星應(yīng)用;2015年11期
5 胡德;郭剛正;;最小二乘法、矩法和最大似然法的應(yīng)用比較[J];統(tǒng)計(jì)與決策;2015年09期
6 賈明明;王宗明;張柏;丁智;;綜合環(huán)境衛(wèi)星與MODIS數(shù)據(jù)的面向?qū)ο笸恋馗采w分類(lèi)方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年03期
7 黃鶴;馮毅;張萌;李明濤;;天繪一號(hào)衛(wèi)星影像的融合及評(píng)價(jià)研究[J];測(cè)繪通報(bào);2013年01期
8 馮登超;陳剛;肖楷樂(lè);杜文雅;吳新穎;;基于最小距離法的遙感圖像分類(lèi)[J];北華航天工業(yè)學(xué)院學(xué)報(bào);2012年03期
9 黃立賢;沈志學(xué);;高光譜遙感圖像的監(jiān)督分類(lèi)[J];地理空間信息;2011年05期
10 賈坤;李強(qiáng)子;田亦陳;吳炳方;;遙感影像分類(lèi)方法研究進(jìn)展[J];光譜學(xué)與光譜分析;2011年10期
相關(guān)博士學(xué)位論文 前1條
1 陽(yáng)愛(ài)民;模糊分類(lèi)模型的研究[D];復(fù)旦大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 王鵬;遙感影像的ISODATA分類(lèi)算法的并行化研究[D];河南大學(xué);2016年
2 楊艷青;不同地貌單元下遙感影像分類(lèi)方法的比較研究[D];山西師范大學(xué);2016年
3 曹密媛;基于遙感影像的地物要素智能識(shí)別與提取研究[D];長(zhǎng)安大學(xué);2015年
4 鄧海龍;高分辨率遙感圖像面向?qū)ο蠓指钆c分類(lèi)方法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
5 張輝;基于BP神經(jīng)網(wǎng)絡(luò)的遙感影像分類(lèi)研究[D];山東師范大學(xué);2013年
6 陳滌非;基于面向?qū)ο蠓椒ǖ牡乇砀脖环诸?lèi)研究[D];成都理工大學(xué);2013年
7 陳寶樓;K-Means算法研究及在文本聚類(lèi)中的應(yīng)用[D];安徽大學(xué);2013年
8 楊寧;高分辨率影像面向?qū)ο蠓诸?lèi)特征選擇方法研究[D];西安科技大學(xué);2012年
9 申真;基于面向?qū)ο蟮母叻直媛蔬b感影像道路提取研究[D];江西理工大學(xué);2012年
10 楊濤;基于BP神經(jīng)網(wǎng)絡(luò)法的煤礦安全評(píng)價(jià)系統(tǒng)研究[D];太原理工大學(xué);2012年
,本文編號(hào):2438804
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2438804.html