石墨烯基和氧化鋅基多層薄膜的氣相沉積法制備及性能研究
[Abstract]:Thin film materials are two-dimensional scale materials with specific properties and applications. The related thin film technology is an effective method to fabricate new functional materials. In recent years, graphene-based composite film and zinc oxide (ZnO)-based composite film have shown excellent performance in the fields of electrode materials, solar cells, electronic devices, energy storage devices, sensors and catalysts, etc. It has a very broad application prospect. In this paper, graphene, graphene-TiO2 multilayer composite films and ZnO/Cu/ZnO sandwich films were prepared by plasma enhanced chemical vapor deposition and physical vapor deposition (magnetron sputtering). Raman (Raman) spectra, X-ray diffraction (XRD), scanning electron microscope (XRD), transmission electron microscope (TEM), atomic force microscope (AFM) (AFM), optical fiber spectrometer and four probes were used to characterize the microstructure of the thin films. The surface morphology and photoelectric properties were tested and analyzed. The main contents are as follows: (1) using Cu foil as catalyst substrate, the conditions of preparing graphene films by PECVD were explored, and high-quality monolayer graphene was successfully obtained under 800oC. The effects of growth temperature, flow rate of methane (CH4) and hydrogen (H _ 2) on the quality and layer number of graphene were studied. It was found that with the decrease of growth temperature, the defects and layers of graphene gradually increased and the conductivity decreased rapidly, and the low CH4 flow rate (1sccm) was beneficial to the formation of high quality graphene, and the increase of CH4 flow rate resulted in the increase of graphene defects. A small amount of H _ 2 or excess H _ 2 will lead to a lot of defects in the growth of graphene. In this experiment, the mass of graphene is the best when the flow rate of H _ 2 is 10sccm. (2) High quality graphene films were prepared by PECVD, and TiO2 was deposited on graphene by magnetron sputtering. Graphene-TiO2 multilayer films were prepared by magnetron sputtering. By comparing the Raman spectra of graphene before and after TiO2 deposition, the charge transfer between graphene and TiO2 was studied. The effect of graphene introduction on the morphology of TiO2 was studied by AFM. It was found that the specific surface area of TiO2 grown on graphene increased obviously. The photocatalytic performance of graphene-TiO2 composite film was studied by photocatalytic degradation of methyl orange. It was found that the effect of graphene film on the degradation of methyl orange by TiO2 was significantly improved. On the one hand, graphene can effectively inhibit the recombination of photogenerated carriers in TiO2 as an electron receiving material, on the other hand, the TiO2 grown on graphene has a larger specific surface area, which provides more reaction points for photocatalytic degradation reaction. The catalytic process has been accelerated. (3) ZnO/Cu/ZnO sandwich films were prepared by magnetron sputtering at room temperature. Firstly, the transmission curve of ZnO/Cu/ZnO multilayer film is simulated by MATLAB program to optimize the structure of the film system in theory so as to guide the experiment. The thickness of ZnO layer, the thickness of Cu layer and the O2/Ar flow ratio of ZnO were changed in the experiment, and their effects on the structure and photoelectric properties of multilayer films were studied. The experimental results show that the block resistance and visible light transmittance of the film increase with the increase of the thickness of the ZnO layer. When the thickness of ZnO is in the range of 40-70nm, the multilayer film exhibits better transmittance, and the transmittance curve is flat in the whole visible light region. Before the Cu layer is continuous, the block resistance decreases with the increase of the thickness of Cu layer, but the transmittance of ultraviolet and visible light decreases gradually. When the flow ratio of O2 / Ar is 1: 4, the block resistance of multilayer film is the highest. After that, as the O2/Ar flow ratio continues to increase, the block resistance gradually decreases, which may be caused by the interface effect.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TB383.2
【相似文獻】
相關期刊論文 前10條
1 宋洪松;劉大博;;石墨烯的制備及石墨烯/PVDF復合材料介電性能的研究[J];化學工程師;2011年08期
2 陳成猛;楊永崗;溫月芳;楊全紅;王茂章;;有序石墨烯導電炭薄膜的制備[J];新型炭材料;2008年04期
3 黃桂榮;陳建;;石墨烯的合成與應用[J];炭素技術;2009年01期
4 周俊文;馬文石;;石墨烯及其納米復合材料的研究[J];化工新型材料;2010年03期
5 李智軍;張暉;薛河;;石墨烯納米片及其場發(fā)射性能研究[J];化工新型材料;2010年S1期
6 王平華;王志剛;劉春華;唐龍祥;向康;;基于π-π相互作用合成星型聚丙烯腈-石墨烯復合材料[J];功能高分子學報;2010年04期
7 王燦;詹亮;喬文明;凌立成;;爆炸法合成石墨烯(英文)[J];新型炭材料;2011年01期
8 翟譯晨;翟冠杰;;后摩爾時代取代硅的微電子材料——碳納米管和石墨烯[J];南京信息工程大學學報(自然科學版);2011年02期
9 韓鵬昱;劉偉;謝亞紅;張希成;;石墨烯與太赫茲科學[J];物理;2009年06期
10 黃毅;陳永勝;;石墨烯的功能化及其相關應用[J];中國科學(B輯:化學);2009年09期
相關會議論文 前10條
1 黃毅;梁嘉杰;張龍;許艷菲;王燕;馬延風;李飛飛;陳永勝;;石墨烯—聚合物高性能復合材料的制備及性質(zhì)研究[A];2009年全國高分子學術論文報告會論文摘要集(上冊)[C];2009年
2 胡連哲;韓雙;李海娟;徐國寶;;電化學發(fā)光分析新材料及新應用[A];中國化學會第27屆學術年會第09分會場摘要集[C];2010年
3 董良旭;張春梅;陳強;劉福平;;等離子化學氣相沉積生長石墨烯的研究[A];第十四屆全國等離子體科學技術會議暨第五屆中國電推進技術學術研討會會議摘要集[C];2009年
4 彭海琳;劉忠范;;狄拉克納米材料與器件[A];中國化學會第27屆學術年會第04分會場摘要集[C];2010年
5 黃毅;梁嘉杰;張龍;許艷菲;王燕;馬延風;陳永勝;;石墨烯功能復合材料的制備及應用[A];中國化學會第27屆學術年會中日青年化學家論壇摘要集[C];2010年
6 徐宇曦;石高全;;石墨烯和卟琳的超分子組裝及其傳感應用[A];中國化學會第27屆學術年會第04分會場摘要集[C];2010年
7 楊乃亮;翟錦;王丹;;利用二維石墨烯橋增強染料敏化太陽能電池中光生電子的傳輸[A];中國化學會第27屆學術年會第10分會場摘要集[C];2010年
8 盧春華;李娟;朱春玲;楊黃浩;;基于石墨烯的生物大分子傳感[A];中國化學會第27屆學術年會第09分會場摘要集[C];2010年
9 劉吉洋;郭少軍;翟月明;李丹;汪爾康;;肉豆蔻酰磷脂酰甘油保護石墨烯的制備[A];中國化學會第27屆學術年會第09分會場摘要集[C];2010年
10 劉莊;;Sp~2類碳納米材料在生物醫(yī)學上的應用-癌癥治療與成像[A];中國化學會第27屆學術年會第04分會場摘要集[C];2010年
相關博士學位論文 前10條
1 許士才;石墨烯的制備、表征及光電性質(zhì)應用研究[D];山東師范大學;2014年
2 沈博;含銀、銅、鉍的石墨烯復合材料的制備和性能研究[D];中國地質(zhì)大學(北京);2014年
3 姜全國;摻雜及電場條件下石墨烯若干催化過程的第一原理研究[D];吉林大學;2014年
4 劉芝婷;石墨烯及其氧化物的表面結構和性質(zhì)的調(diào)控[D];華東理工大學;2014年
5 苗萌;小分子在二氧化鈦和石墨烯表面吸附與反應的第一性原理研究[D];浙江大學;2014年
6 劉嘯宇;石墨烯基和氧化鋅基多層薄膜的氣相沉積法制備及性能研究[D];吉林大學;2014年
7 謝超;基于石墨烯與硅納米結構高性能光伏器件的構造與光電性能研究[D];合肥工業(yè)大學;2014年
8 劉磊;石墨烯費米速度調(diào)制結構中量子輸運性質(zhì)的研究[D];河北師范大學;2014年
9 張學全;石墨烯的功能化及其光電性能研究[D];天津大學;2011年
10 李海東;石墨烯納米結構中的電子輸運性質(zhì)[D];吉林大學;2009年
相關碩士學位論文 前10條
1 朱振華;石墨烯傳感性能理論計算[D];華中師范大學;2014年
2 劉站站;聚合物共價修飾石墨烯的研究[D];華東理工大學;2014年
3 杜蛟;石墨烯及其復合材料對生物小分子的電化學檢測[D];蘇州大學;2014年
4 侯文俊;石墨烯增強尼龍6纖維的研究[D];蘇州大學;2014年
5 邢艷敏;絕緣襯底上石墨烯的形成及其機理研究[D];華中師范大學;2014年
6 王峗;石墨烯用于鋰離子電池負極材料的應用基礎研究[D];華東理工大學;2014年
7 劉曉彤;石墨烯及柔性器件在有機磷類農(nóng)藥殘留分析方面的應用[D];中國農(nóng)業(yè)大學;2014年
8 李亮;石墨烯改性石墨應用于鋰離子電池負極材料的研究[D];華中師范大學;2014年
9 李金霞;石墨烯摻雜碳印刷陣列電極的制作及其應用研究[D];寧夏大學;2014年
10 李坤陽;納米氧化石墨烯基底材料的制備及其在基因轉(zhuǎn)染和干細胞分化中的應用[D];蘇州大學;2014年
本文編號:2438498
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2438498.html