天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 工程管理論文 >

薄壁構(gòu)件約束阻尼結(jié)構(gòu)動力學(xué)拓?fù)鋬?yōu)化研究

發(fā)布時間:2019-02-21 16:40
【摘要】:薄壁構(gòu)件不僅能夠以很小的重量代價,承擔(dān)相當(dāng)大的載荷,而且具有散熱性能良好等特性,在航空航天和汽車等行業(yè)上獲得了廣泛的應(yīng)用。隨著現(xiàn)代工業(yè)節(jié)能環(huán)保的要求,輕量化成為產(chǎn)品設(shè)計中一個重要的部分,隨之而來的薄壁構(gòu)件的振動噪聲問題也日益突出。約束阻尼結(jié)構(gòu)能有效地抑制結(jié)構(gòu)寬頻振動噪聲,在傳統(tǒng)的約束阻尼結(jié)構(gòu)減振設(shè)計中,將約束阻尼材料覆蓋于整個結(jié)構(gòu)的表面,有效抑制結(jié)構(gòu)振動和噪聲的同時,增加了結(jié)構(gòu)的附加質(zhì)量。本文以約束阻尼薄板結(jié)構(gòu)為研究對象,在深入研究約束阻尼板結(jié)構(gòu)有限元建模的基礎(chǔ)上,將動力學(xué)拓?fù)鋬?yōu)化方法引入到約束阻尼材料在薄板結(jié)構(gòu)上的布局優(yōu)化問題中,提出了約束阻尼薄板結(jié)構(gòu)的動力學(xué)拓?fù)鋬?yōu)化方法,為提高約束阻尼材料的利用率和抑制振動的能力提供了一種新的方法。本文的研究成果主要有一下幾個方面:根據(jù)彈性材料和粘彈性材料的本構(gòu)關(guān)系,采用能量法,建立了約束層阻尼板的有限元動力學(xué)模型,通過算例驗證了有限元模型的正確性。分析了約束阻尼懸臂板的約束阻尼材料使用量和分布位置對約束阻尼結(jié)構(gòu)的振動特性的影響,闡明了對約束阻尼材料的布局進(jìn)行優(yōu)化的必要性。建立了以模態(tài)損耗因子最大化為目標(biāo)函數(shù)的約束阻尼板的拓?fù)鋬?yōu)化模型,基于模態(tài)應(yīng)變能方法,推導(dǎo)了目標(biāo)函數(shù)對設(shè)計變量的靈敏度,采用獨立網(wǎng)格濾波技術(shù)消除棋盤格式,制定了刪除和添加約束阻尼單元的規(guī)則,編制基于雙向漸進(jìn)優(yōu)化算法的約束阻尼結(jié)構(gòu)的拓?fù)鋬?yōu)化流程,對約束阻尼懸臂板結(jié)構(gòu)的約束阻尼材料的布局進(jìn)行了優(yōu)化,并與漸進(jìn)優(yōu)化算法的優(yōu)化結(jié)果進(jìn)行對比分析,結(jié)果顯示:本文提出的基于雙向漸進(jìn)優(yōu)化算法的約束阻尼拓?fù)鋬?yōu)化方法具有更好的優(yōu)化能力,得到的拓?fù)錁?gòu)型比漸進(jìn)優(yōu)化算法更優(yōu);赟IMP插值模型,重新組裝了約束阻尼板的質(zhì)量矩陣和剛度矩陣。建立以模態(tài)損耗因子倒數(shù)最小化為優(yōu)化目標(biāo)的約束阻尼結(jié)構(gòu)的拓?fù)鋬?yōu)化模型。為了避免模態(tài)交換的問題,跟蹤計算迭代過程中的MAC值。推導(dǎo)了目標(biāo)函數(shù)對設(shè)計變量的靈敏度,采用獨立網(wǎng)格濾波技術(shù)消除棋盤格式。編制基于SIMP插值模型和MMA算法的約束阻尼結(jié)構(gòu)的拓?fù)鋬?yōu)化流程,以約束阻尼懸臂板和兩短邊固定的約束阻尼板為研究對象,對約束阻尼材料的布局進(jìn)行了優(yōu)化,驗證了提出的優(yōu)化方法的有效性和適用性。提出了在對指定頻帶簡諧激勵下,以約束阻尼結(jié)構(gòu)的某些位置的共振峰值的平方最小化為優(yōu)化目標(biāo)的約束阻尼結(jié)構(gòu)動力學(xué)拓?fù)鋬?yōu)化模型。針對傳統(tǒng)的靈敏度分析方法未考慮模態(tài)阻尼比的靈敏度,會產(chǎn)生較大的誤差的問題,對傳統(tǒng)的靈敏度分析方法進(jìn)行改進(jìn),提出了考慮模態(tài)阻尼比靈敏度的靈敏度分析方法。采用漸進(jìn)優(yōu)化算法對建立的優(yōu)化模型進(jìn)行求解,編制了其優(yōu)化流程。以懸臂的約束阻尼板和四邊固定的約束阻尼板為研究對象,對拓?fù)鋬?yōu)化結(jié)果進(jìn)行了分析,結(jié)果表明:兩種靈敏度分析方法的優(yōu)化結(jié)果均能夠降低優(yōu)化目標(biāo)值,并且本文提出的考慮了模態(tài)阻尼比靈敏度的靈敏度分析方法得到的優(yōu)化結(jié)果比未考慮模態(tài)阻尼比靈敏度的靈敏度分析方法的優(yōu)化結(jié)果的模態(tài)阻尼比更大共振峰值更小,驗證了本文提出的考慮了模態(tài)阻尼比靈敏度的靈敏的方法更有效。提出了在約束阻尼結(jié)構(gòu)受簡諧激勵或頻帶簡諧激勵時,以約束阻尼結(jié)構(gòu)的某些位置的頻響位移最小化為優(yōu)化目標(biāo)約束阻尼結(jié)構(gòu)的動力學(xué)拓?fù)鋬?yōu)化模型。采用復(fù)模態(tài)疊加法對約束阻尼動力學(xué)方程求解,分析了直接法和伴隨法計算靈敏度的特點和適用范圍,通過算例分析確定了采用伴隨法對建立的動力學(xué)優(yōu)化模型進(jìn)行靈敏度分析。采用MMA算法對優(yōu)化模型進(jìn)行求解,編制以頻響位移最小化為優(yōu)化目標(biāo)的約束阻尼結(jié)構(gòu)的拓?fù)鋬?yōu)化流程。通過算例分析,驗證了提出的優(yōu)化方法的有效性。最后,對約束阻尼板結(jié)構(gòu)的優(yōu)化布局進(jìn)行了實驗研究,驗證了本文提出的拓?fù)鋬?yōu)化方法的正確性和有效性。
[Abstract]:The thin-wall component not only can bear a considerable load at a small weight, but also has the characteristics of good heat dissipation performance and the like, and has wide application in the fields of aerospace and automobile and the like. With the requirement of energy-saving and environmental protection in the modern industry, the light weight becomes an important part in the product design, and the problem of vibration noise of the thin-wall component is also becoming more and more prominent. The constrained damping structure can effectively restrain the broadband vibration noise of the structure, and in the traditional constrained damping structure vibration reduction design, the constraint damping material is covered on the surface of the whole structure, the vibration and the noise of the structure are effectively restrained, and the additional quality of the structure is increased. In this paper, based on the study of the finite element modeling of the constrained damping plate structure, the dynamic topology optimization method is introduced to the optimization of the layout of the constrained damping material in the thin plate structure. The dynamic topology optimization method of constrained damping thin plate structure is put forward, and a new method is provided to improve the utilization rate of the constrained damping material and to suppress the vibration. The results of this paper have several aspects: according to the structure of the elastic material and the viscoelastic material, the energy method is used to establish the finite element dynamic model of the damping plate of the constrained layer, and the correctness of the finite element model is verified by the calculation example. The influence of the applied amount and the distribution position of the constrained damping cantilever plate on the vibration characteristics of the constrained damping structure is analyzed, and the necessity of the optimization of the layout of the constrained damping material is explained. Based on the modal strain energy method, the sensitivity of the objective function to the design variable is derived based on the modal strain energy method, and the board format is eliminated by adopting the independent mesh filtering technology. the rule of deleting and adding the constraint damping unit is established, the topological optimization flow of the constraint damping structure based on the two-way progressive optimization algorithm is prepared, the layout of the constrained damping material of the constrained damping cantilever plate structure is optimized, The result shows that the constrained damping topology optimization method based on the two-way progressive optimization algorithm has better optimization ability, and the obtained topological configuration is better than the progressive optimization algorithm. The mass matrix and stiffness matrix of the constrained damping plate are re-assembled based on the SIMP interpolation model. and a topological optimization model of a constrained damping structure with the inverse of the modal loss factor is minimized to the optimization target is established. In order to avoid the problem of modal exchange, the MAC value in the iterative process is tracked. The sensitivity of the objective function to the design variable is derived, and the checkerboard format is eliminated by using the independent mesh filtering technique. The topology optimization process of the constrained damping structure based on the SIMO interpolation model and the MMA algorithm is developed to restrain the damping cantilever plate and the two short side fixed constrained damping plates as the research object, and the layout of the constrained damping material is optimized, and the validity and the applicability of the proposed optimization method are verified. In this paper, a constrained damping structure dynamic topology optimization model is proposed to minimize the square of the resonance peak at certain positions of the damping structure under the simple harmonic excitation of the specified frequency band. For the traditional sensitivity analysis method, the sensitivity of the modal damping ratio is not considered, the problem of large error can be generated, the conventional sensitivity analysis method is improved, and the sensitivity analysis method considering the modal damping ratio sensitivity is provided. The optimization model of the established optimization model is solved by the gradual optimization algorithm, and the optimization process is developed. Based on the constrained damping plate of the cantilever and the constrained damping plate with four sides fixed, the topological optimization results are analyzed. The results show that the optimization results of the two sensitivity analysis methods can reduce the optimization target value. and the modal damping ratio of the optimization result of the sensitivity analysis method without considering the modal damping ratio sensitivity is smaller than that of the sensitivity analysis method without considering the modal damping ratio sensitivity, It is proved that the sensitive method considering the modal damping ratio is more effective. It is proposed that the dynamic topology optimization model of the constrained damping structure is optimized by minimizing the frequency response displacement of certain positions of the damping structure when the constrained damping structure is excited by the simple harmonic excitation or the frequency band simple harmonic excitation. In this paper, a complex mode superposition method is used to solve the constraint damping dynamic equation, and the characteristics and the application range of the direct method and the adjoint method are analyzed, and the sensitivity analysis of the established dynamic optimization model by the adjoint method is determined by the calculation example analysis. The optimization model is solved by using the MMA algorithm, and the topological optimization process of the constrained damping structure with the minimum frequency response displacement as the optimization objective is prepared. The effectiveness of the proposed optimization method is verified by the analysis of the example. Finally, the optimal layout of the constrained damping plate structure is studied, and the correctness and validity of the topology optimization method proposed in this paper are verified.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB535.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 程耿東;關(guān)于桁架結(jié)構(gòu)拓?fù)鋬?yōu)化中的奇異最優(yōu)解[J];大連理工大學(xué)學(xué)報;2000年04期

2 李明俊,蘇媛,孫向春,萬詩貴,曹義華;層合阻尼結(jié)構(gòu)各向異性設(shè)計之阻尼特性分析[J];復(fù)合材料學(xué)報;2002年03期

3 陳國平,錢振東;附加約束阻尼層后梁的振動分析[J];航空學(xué)報;1996年05期

4 石連拴,孫煥純,馮恩民;具有動應(yīng)力和動位移約束的離散變量結(jié)構(gòu)形狀優(yōu)化設(shè)計方法[J];計算力學(xué)學(xué)報;2001年04期

5 羅震,陳立平,黃玉盈,張云清;基于RAMP密度-剛度插值格式的結(jié)構(gòu)拓?fù)鋬?yōu)化[J];計算力學(xué)學(xué)報;2005年05期

6 羅俊召;王書亭;陳立平;;基于水平集方法的均布式柔性機(jī)構(gòu)的拓?fù)鋬?yōu)化設(shè)計[J];計算力學(xué)學(xué)報;2009年06期

7 宿新東,管迪華;利用雙向漸進(jìn)結(jié)構(gòu)優(yōu)化法對結(jié)構(gòu)固有振型的優(yōu)化[J];機(jī)械強(qiáng)度;2004年05期

8 郭中澤;陳裕澤;鄧克文;侯強(qiáng);;基于ESO的約束阻尼板拓?fù)鋬?yōu)化設(shè)計研究[J];機(jī)械設(shè)計;2006年10期

9 歐陽高飛;張憲民;;基于水平集方法的結(jié)構(gòu)可靠性拓?fù)鋬?yōu)化[J];機(jī)械工程學(xué)報;2008年10期

10 羅震,陳立平,黃玉盈,張云清;連續(xù)體結(jié)構(gòu)的拓?fù)鋬?yōu)化設(shè)計[J];力學(xué)進(jìn)展;2004年04期

,

本文編號:2427680

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2427680.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0ce4a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com