基于改進SIFT的遙感圖像匹配方法
發(fā)布時間:2019-01-07 18:16
【摘要】:針對SIFT算法處理遙感圖像時存在計算量大、時間代價高的問題,從極值點檢測和相似性度量兩個方面對SIFT算法進行優(yōu)化改進。改進算法首先利用距離檢測點越近的像素點對其影響越大的特點,在極值點檢測時選取距離檢測點更近、權(quán)重更高的14個相鄰點來替代SIFT算法中的26個鄰域點,減少極值檢測的計算量。其次,在SIFT特征向量匹配的相似性度量方面利用更簡單的曼哈頓距離與切比雪夫距離的線性組合來替代歐氏距離,減少特征匹配的計算復(fù)雜度,提高匹配效率。最后通過實測遙感數(shù)據(jù)驗證所提方法的有效性。
[Abstract]:Aiming at the problems of large computation and high time cost in processing remote sensing images with SIFT algorithm, the SIFT algorithm is optimized and improved from two aspects: extremum detection and similarity measurement. The improved algorithm firstly takes advantage of the fact that the pixel point closer to the detection point has greater influence on it, and selects 14 adjacent points which are closer to the detection point and higher weight to replace the 26 neighborhood points in the SIFT algorithm. Reduce the computation of extremum detection. Secondly, in the aspect of similarity measurement of SIFT feature vector matching, a simpler linear combination of Manhattan distance and Chebyshev distance is used to replace Euclidean distance, which reduces the computational complexity of feature matching and improves the matching efficiency. Finally, the validity of the proposed method is verified by measured remote sensing data.
【作者單位】: 海軍航空工程學(xué)院研究生管理大隊;海軍航空工程學(xué)院信息融合研究所;海軍航空工程學(xué)院電子信息系;
【基金】:國家自然科學(xué)基金(61501487,61531020,61471382,61401495) 山東省自然科學(xué)基金(2015ZRA06052) “泰山學(xué)者”建設(shè)工程專項經(jīng)費
【分類號】:TP751
本文編號:2403976
[Abstract]:Aiming at the problems of large computation and high time cost in processing remote sensing images with SIFT algorithm, the SIFT algorithm is optimized and improved from two aspects: extremum detection and similarity measurement. The improved algorithm firstly takes advantage of the fact that the pixel point closer to the detection point has greater influence on it, and selects 14 adjacent points which are closer to the detection point and higher weight to replace the 26 neighborhood points in the SIFT algorithm. Reduce the computation of extremum detection. Secondly, in the aspect of similarity measurement of SIFT feature vector matching, a simpler linear combination of Manhattan distance and Chebyshev distance is used to replace Euclidean distance, which reduces the computational complexity of feature matching and improves the matching efficiency. Finally, the validity of the proposed method is verified by measured remote sensing data.
【作者單位】: 海軍航空工程學(xué)院研究生管理大隊;海軍航空工程學(xué)院信息融合研究所;海軍航空工程學(xué)院電子信息系;
【基金】:國家自然科學(xué)基金(61501487,61531020,61471382,61401495) 山東省自然科學(xué)基金(2015ZRA06052) “泰山學(xué)者”建設(shè)工程專項經(jīng)費
【分類號】:TP751
【相似文獻】
相關(guān)期刊論文 前2條
1 吳一全;陳颯;;基于Contourlet域Krawtchouk矩和改進粒子群的遙感圖像匹配[J];宇航學(xué)報;2010年02期
2 ;[J];;年期
相關(guān)博士學(xué)位論文 前1條
1 胡修兵;中波紅外與可見光遙感圖像匹配技術(shù)研究[D];武漢大學(xué);2014年
相關(guān)碩士學(xué)位論文 前3條
1 田影;基于局部特征與拓撲約束的遙感圖像匹配與目標(biāo)定位[D];東北大學(xué);2014年
2 趙恒;數(shù)字高程(DEM)差異性檢測及校驗方法研究[D];天津大學(xué);2014年
3 王宇帆;基于局部特征的遙感圖像匹配方法[D];上海交通大學(xué);2013年
,本文編號:2403976
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2403976.html
最近更新
教材專著