天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 工程管理論文 >

基于壓電分流陣列的帶隙調(diào)控及振動(dòng)抑制

發(fā)布時(shí)間:2019-01-07 10:45
【摘要】:將相同的壓電片周期性地粘貼到被控結(jié)構(gòu)表面,并在每個(gè)壓電片上連接一個(gè)相同的分流電路,形成陣列結(jié)構(gòu)。稱這種陣列結(jié)構(gòu)為壓電分流陣列,而將安裝了壓電分流陣列的復(fù)合結(jié)構(gòu)稱為壓電分流陣列結(jié)構(gòu)。壓電分流陣列除了具有傳統(tǒng)壓電分流阻尼技術(shù)附加質(zhì)量小、安裝方便和簡(jiǎn)單易用等優(yōu)點(diǎn)外,還同時(shí)具備聲子晶體帶隙特性,有望實(shí)現(xiàn)振動(dòng)與噪聲寬頻控制的目的,在輕質(zhì)柔性結(jié)構(gòu)的減振降噪領(lǐng)域具有潛在的應(yīng)用前景。本文以航天工程中輕質(zhì)柔性結(jié)構(gòu)振動(dòng)與噪聲控制為背景,以高分衛(wèi)星微振動(dòng)抑制為目標(biāo),圍繞一維和二維壓電分流陣列,解決與其相關(guān)的理論基礎(chǔ)和技術(shù)應(yīng)用問題,利用理論分析、軟件仿真和實(shí)驗(yàn)測(cè)試相結(jié)合的方法,對(duì)壓電分流陣列進(jìn)行系統(tǒng)和深入的理論研究和工程應(yīng)用探索,主要?jiǎng)?chuàng)新及研究成果如下:提出了壓電分流陣列結(jié)構(gòu)新的建模和計(jì)算方法。首次提出一維壓電分流陣列結(jié)構(gòu)的精確積分模型,并分析了傳統(tǒng)長(zhǎng)波近似模型引入的誤差。發(fā)展了新的二維壓電分流陣列結(jié)構(gòu)帶隙計(jì)算方法,包括數(shù)值法求解超越特征值問題或波場(chǎng)變換實(shí)現(xiàn)特征值問題線性化,完成了二維壓電分流陣列結(jié)構(gòu)任意方向傳播常數(shù)的求解。以上算法研究成果為壓電分流陣列的理論分析和設(shè)計(jì)應(yīng)用提供了有力的工具。完成了壓電分流陣列結(jié)構(gòu)的帶隙特性與機(jī)理研究。首次系統(tǒng)深入地研究了壓電分流陣列結(jié)構(gòu)的帶隙特性和帶隙形成機(jī)理,包括電阻電路、諧振電路和負(fù)電容電路三種不同類型分流電路形成帶隙的物理機(jī)理,以及電路參數(shù)對(duì)帶隙內(nèi)傳播常數(shù)的影響。電阻能夠在分流電路中形成阻尼耗散,不僅對(duì)帶隙產(chǎn)生影響,還會(huì)在通帶內(nèi)產(chǎn)生一定的衰減作用。電感與壓電片電容形成諧振單元,能夠在壓電分流陣列結(jié)構(gòu)中引起局域共振帶隙。負(fù)電容的引入提高了壓電分流系統(tǒng)的機(jī)電耦合系數(shù),能夠有效增大帶隙寬度及帶隙內(nèi)衰減。通過對(duì)壓電分流陣列結(jié)構(gòu)帶隙特性和機(jī)理的研究,有效揭示了關(guān)鍵的帶隙影響因素和影響規(guī)律,為壓電分流陣列的設(shè)計(jì)提供了理論基礎(chǔ)。實(shí)現(xiàn)了壓電分流陣列的優(yōu)化設(shè)計(jì)。綜合運(yùn)用前面的算法工具和理論分析成果,結(jié)合適當(dāng)?shù)膬?yōu)化算法,實(shí)現(xiàn)壓電分流陣列的優(yōu)化設(shè)計(jì),包括電路參數(shù)和幾何參數(shù)兩個(gè)方面。電路參數(shù)根據(jù)分流電路類型的不同,主要有電阻、電感和負(fù)電容,適當(dāng)選取電路參數(shù)不僅是帶隙位置調(diào)控的關(guān)鍵,還是增大帶隙寬度和帶隙內(nèi)衰減的有效手段。幾何參數(shù)主要是壓電片尺寸和晶格常數(shù),壓電片尺寸直接關(guān)系到晶格填充率和分流電路的機(jī)電耦合效率,而晶格常數(shù)也是影響帶隙特性的重要參數(shù)。探索了壓電分流陣列在衛(wèi)星微振動(dòng)抑制中的應(yīng)用可行性。壓電分流陣列同時(shí)吸取了傳統(tǒng)壓電分流阻尼技術(shù)和聲子晶體帶隙思想的優(yōu)點(diǎn),具有附加質(zhì)量小、安裝方便、簡(jiǎn)單易用和寬頻控制等優(yōu)點(diǎn),尤其適合于航天工程中輕質(zhì)柔性結(jié)構(gòu)的振動(dòng)與噪聲控制。以高分衛(wèi)星微振動(dòng)傳遞抑制為目標(biāo),在衛(wèi)星艙體上設(shè)計(jì)了二維壓電分流陣列,分析了分流陣列對(duì)艙體上微振動(dòng)傳遞的抑制作用,探索了壓電分流陣列在衛(wèi)星微振動(dòng)抑制中應(yīng)用的可行性。本文在航天工程中輕質(zhì)柔性結(jié)構(gòu)振動(dòng)與噪聲控制的需求牽引下,系統(tǒng)深入地研究了壓電分流陣列的建模與算法、帶隙機(jī)理、帶隙特性和優(yōu)化設(shè)計(jì),并探索了壓電分流陣列在衛(wèi)星微振動(dòng)抑制中的應(yīng)用可能性。本文的研究成果不僅解決了壓電分流陣列理論研究中的大量關(guān)鍵理論技術(shù)問題,也為其在航天工程中的實(shí)際應(yīng)用進(jìn)行了有益的探索。
[Abstract]:The same piezoelectric sheet is periodically adhered to the surface of the controlled structure and the same shunt circuit is connected to each of the piezoelectric plates to form an array structure. The array structure is called a piezoelectric shunt array, and a composite structure in which a piezoelectric shunt array is mounted is referred to as a piezoelectric shunt array structure. in addition, that piezoelectric shunt array has the advantages of small additional quality, convenient installation and easy use and the like with the traditional piezoelectric shunt damping technology, and has potential application prospect in the field of vibration reduction and noise reduction of the light flexible structure. In this paper, based on the vibration and noise control of light flexible structure in space engineering, a two-dimensional and two-dimensional piezoelectric shunt array is used to solve the problems of theoretical foundation and technology application. Based on the combination of the software simulation and the experiment test, the system and in-depth theoretical research and engineering application exploration of the piezoelectric shunt array are carried out. The main innovation and the research results are as follows: the new modeling and calculation method of the piezoelectric shunt array structure is proposed. The precise integral model of one-dimensional piezoelectric shunt array is proposed for the first time, and the error introduced by the traditional long-wave approximate model is analyzed. The method for calculating the band gap of a new two-dimensional piezoelectric shunt array structure is developed, which comprises the following steps of: solving the problem of the transcendental eigenvalue problem or the wave field transformation to realize the linearization of the characteristic value problem by a numerical method, and completing the solution of the propagation constant in the arbitrary direction of the two-dimensional piezoelectric shunt array structure. The results of the above algorithm provide a powerful tool for the theoretical analysis and design application of the piezoelectric shunt array. The band gap characteristics and mechanism of the piezoelectric shunt array structure are studied. The band gap and the band gap forming mechanism of the structure of the piezoelectric shunt array are studied in depth for the first time. The physical mechanism of the band gap and the influence of the circuit parameters on the propagation constant in the band gap are included in the three different types of shunt circuits of the resistance circuit, the resonant circuit and the negative capacitance circuit. the resistance can form the damping dissipation in the shunt circuit, not only has the influence on the band gap, but also generates a certain attenuation effect in the pass band. the inductance and the capacitance of the piezoelectric plate form a resonance unit, and the local resonance band gap can be caused in the structure of the piezoelectric shunt array. The introduction of the negative capacitance improves the electromechanical coupling coefficient of the piezoelectric shunt system, and can effectively increase the band gap width and the band gap attenuation. Through the study of the gap character and mechanism of the structure of the piezoelectric shunt array, the key band gap influence factors and the influence law are effectively revealed, and the theoretical basis for the design of the piezoelectric shunt array is provided. and the optimal design of the piezoelectric shunt array is realized. By using the previous algorithm tools and the theoretical analysis results, the optimal design of the piezoelectric shunt array is realized by combining the appropriate optimization algorithm, including both the circuit parameters and the geometric parameters. The circuit parameters are mainly of resistance, inductance and negative capacitance depending on the type of the shunt circuit. The proper selection of circuit parameters is not only the key to the regulation of the position of the band gap, but also the effective means to increase the band gap width and the attenuation in the band gap. The geometrical parameters are mainly the size of the piezoelectric plate and the lattice constant, the size of the piezoelectric plate is directly related to the lattice filling rate and the electromechanical coupling efficiency of the shunt circuit, and the lattice constant is also an important parameter which influences the band gap characteristic. The application of the piezoelectric shunt array in the suppression of satellite micro-vibration is explored. The piezoelectric shunt array has the advantages of small additional quality, convenient installation, simple and easy to use and wide frequency control, and is especially suitable for vibration and noise control of light flexible structure in space engineering. A two-dimensional piezoelectric shunt array is designed on the satellite cabin, and the effect of the shunt array on the micro-vibration transfer of the cabin is analyzed. The feasibility of the application of the piezoelectric shunt array in the suppression of the micro-vibration of the satellite is also discussed. In this paper, the modeling and algorithm of the piezoelectric shunt array, the mechanism of the band gap, the band gap characteristic and the optimization design of the piezoelectric shunt array are studied, and the possibility of the application of the piezoelectric shunt array in the suppression of the micro-vibration of the satellite is also studied. The research results of this paper not only solve the large number of key theoretical and technical problems in the theory study of the piezoelectric shunt array, but also make a useful exploration for its practical application in space engineering.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB535

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 杜設(shè)亮,傅建中,張?jiān)?陳子辰;仿生主動(dòng)構(gòu)件壓電變換器研究[J];中國(guó)機(jī)械工程;2001年05期

2 蔣建平;李東旭;;壓電層合板高階計(jì)算模型[J];振動(dòng)與沖擊;2008年04期

3 孫浩;楊智春;李凱翔;解江;李斌;張玲凌;;壓電分流阻尼控制精密機(jī)械結(jié)構(gòu)振動(dòng)的研究[J];振動(dòng)與沖擊;2008年06期

4 丁大成,牛勇;壓電陶瓷復(fù)合振子的電聲效率與振子壓電片位置關(guān)系的實(shí)驗(yàn)研究[J];聲學(xué)學(xué)報(bào);1983年06期

5 林西強(qiáng),任鈞國(guó);含壓電片層合板的靜變形控制[J];固體力學(xué)學(xué)報(bào);1998年04期

6 林西強(qiáng),任鈞國(guó);含壓電片梁的靜變形控制[J];應(yīng)用力學(xué)學(xué)報(bào);1998年04期

7 李書光,胡松青,張軍;圓管狀壓電片低頻接收電壓靈敏度的一種簡(jiǎn)化分析法[J];青島大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年01期

8 楊智春,孫浩,崔海濤;壓電分流阻尼控制懸臂梁振動(dòng)的參數(shù)優(yōu)化分析[J];機(jī)械科學(xué)與技術(shù);2005年06期

9 劉登云;陳洪濤;楊志剛;程光明;;壓電疊堆泵的初步研究[J];液壓與氣動(dòng);2007年03期

10 吳磊;王建國(guó);;壓電片位置和大小對(duì)板振動(dòng)控制的影響[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年08期

相關(guān)會(huì)議論文 前10條

1 常道慶;劉碧龍;李曉東;田靜;;智能吸聲控制中壓電片位置的選取[A];中國(guó)聲學(xué)學(xué)會(huì)2007年青年學(xué)術(shù)會(huì)議論文集(上)[C];2007年

2 匡友弟;王卓;李國(guó)清;陳傳堯;;節(jié)式壓電梁的電阻抗模擬和實(shí)驗(yàn)研究[A];第二屆全國(guó)壓電和聲波理論及器件技術(shù)研討會(huì)摘要集[C];2006年

3 尹瀟然;李國(guó)清;徐巍;繆幸圓;;有限元法與阻抗法分析壓電智能梁的傳感與激勵(lì)[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年

4 楊亞東;王軍;馮國(guó)旭;程小全;;壓電懸臂梁的壓電片位置及主動(dòng)控制研究[A];經(jīng)濟(jì)發(fā)展方式轉(zhuǎn)變與自主創(chuàng)新——第十二屆中國(guó)科學(xué)技術(shù)協(xié)會(huì)年會(huì)(第二卷)[C];2010年

5 徐巍;李國(guó)清;尹瀟然;繆幸圓;;有限元法與阻抗法分析壓電激勵(lì)下的彈性薄板[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年

6 段吉棟;何遠(yuǎn)航;;壓電蜂窩結(jié)構(gòu)振動(dòng)控制研究[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年

7 袁學(xué)帥;陳富軍;姚林泉;;壓電層合結(jié)構(gòu)的子域配點(diǎn)法[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年

8 吳鵬;曹東興;;一種新型壓電俘能器的動(dòng)力學(xué)建模及振動(dòng)特性分析[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年

9 裘進(jìn)浩;季宏麗;劉建;朱孔軍;;壓電功能器件及其在智能結(jié)構(gòu)中的應(yīng)用[A];第三屆全國(guó)壓電和聲波理論及器件技術(shù)研討會(huì)論文集[C];2008年

10 張立;郭定文;王秋蓉;;壓電降噪的多物理場(chǎng)建模分析方法[A];運(yùn)輸噪聲的預(yù)測(cè)與控制——2009全國(guó)環(huán)境聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年

相關(guān)重要報(bào)紙文章 前2條

1 浙江 張培君;壓電式電子門鈴[N];電子報(bào);2007年

2 臺(tái)灣省臺(tái)北市 何X山;用壓電式蜂鳴器產(chǎn)生 直流電壓的實(shí)驗(yàn)[N];電子報(bào);2004年

相關(guān)博士學(xué)位論文 前10條

1 馬天兵;壓電智能結(jié)構(gòu)振動(dòng)主動(dòng)控制關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2014年

2 郭抗抗;雙穩(wěn)態(tài)壓電懸臂梁俘能器的動(dòng)態(tài)響應(yīng)及發(fā)電性能研究[D];天津大學(xué);2015年

3 龐帥;風(fēng)致壓電振動(dòng)能量收集與存儲(chǔ)技術(shù)研究[D];北京林業(yè)大學(xué);2016年

4 徐振龍;磁力耦合壓電電磁復(fù)合俘能器發(fā)電特性研究[D];哈爾濱工業(yè)大學(xué);2016年

5 魏勝;基于碰撞致上變頻原理的壓電能量收集技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年

6 陳奕聲;路面車致變形的壓電俘能機(jī)理研究[D];浙江大學(xué);2016年

7 陳圣兵;基于壓電分流陣列的帶隙調(diào)控及振動(dòng)抑制[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年

8 胡洪平;低頻壓電俘能器研究[D];華中科技大學(xué);2006年

9 王紅艷;梁結(jié)構(gòu)壓電及壓電電磁復(fù)合俘能器模型的建立與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2013年

10 閆震;提高壓電振動(dòng)發(fā)電機(jī)發(fā)電能力的理論及關(guān)鍵技術(shù)研究[D];華北電力大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 任佳琦;基于諧振式懸臂梁的壓電—電磁復(fù)合俘能技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年

2 崔興可;微尺度壓電振動(dòng)發(fā)電機(jī)構(gòu)動(dòng)力學(xué)分析與微電源設(shè)計(jì)[D];山東大學(xué);2015年

3 陳丹鵬;薄壁板氣動(dòng)彈性非線性振動(dòng)的壓電俘能研究[D];哈爾濱工業(yè)大學(xué);2015年

4 冉令坤;壓電曲殼結(jié)構(gòu)動(dòng)力形狀控制及優(yōu)化設(shè)計(jì)[D];大連理工大學(xué);2015年

5 劉杉;振動(dòng)發(fā)電與壓電發(fā)電混合式能量捕獲裝置的研究[D];河北工業(yè)大學(xué);2015年

6 王大宇;基于移動(dòng)終端的復(fù)合梁結(jié)構(gòu)壓電發(fā)電技術(shù)研究[D];電子科技大學(xué);2014年

7 賈元輝;埋置壓電裝置瀝青混凝土制備與性能研究[D];河北工業(yè)大學(xué);2015年

8 張?zhí)N馨;壓電非線性俘能電路及其在道路狀態(tài)監(jiān)測(cè)中的應(yīng)用[D];北京交通大學(xué);2016年

9 張錦;基于壓電纖維復(fù)合材料的柔性結(jié)構(gòu)振動(dòng)半主動(dòng)控制研究[D];南京航空航天大學(xué);2015年

10 鄧文;基于壓電阻抗模型參數(shù)識(shí)別的結(jié)構(gòu)健康監(jiān)測(cè)研究[D];南京航空航天大學(xué);2015年

,

本文編號(hào):2403567

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2403567.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c1389***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com