基于深度學(xué)習(xí)的遙感圖像檢索方法研究
[Abstract]:The characteristics of mass, diversity and complexity of remote sensing image data put forward higher requirements for the speed and accuracy of remote sensing image retrieval. Content-based remote sensing image retrieval method is the focus of research in recent years. The feature extraction method is the key to the effect of remote sensing image retrieval. Most of the traditional feature extraction methods are to extract the underlying visual features of remote sensing images for retrieval, which has the disadvantage that the underlying features are difficult to express the semantic information of the image. In this paper, a method of remote sensing image retrieval based on deep learning is proposed. Through the training of neural network, the mapping relationship between image bottom features and high-level semantics is established. Two different depth learning methods are used for remote sensing image retrieval. (1) A semi-supervised remote sensing image retrieval method based on depth learning is proposed. Then the feature dictionary is obtained by feature learning on a large number of unlabeled remote sensing images based on sparse automatic coding method and based on the idea of convolution neural network. Using the trained feature dictionary to convolution and pool the remote sensing image, the feature map of each image is obtained. Then the feature map is used to train the Softmax classifier, and finally to classify the retrieval image, the distance between the features is calculated in the same category, and then the remote sensing image retrieval is realized. The experimental results show that this method can effectively improve the speed and accuracy of remote sensing image retrieval. (2) A remote sensing image retrieval method based on convolution neural network is proposed. It includes CNN feature extraction network layer and Softmax classification layer. The high level semantic feature of remote sensing image is extracted by convolution neural network. The generalization ability of remote sensing image is improved by introducing dropout layer, and the retrieval accuracy of remote sensing image is further improved. Methods in this paper (1) the retrieval accuracy in remote sensing image retrieval experiment is 90.6 and the retrieval time is 7.1844 s, and the retrieval accuracy in remote sensing image retrieval experiment is 98.8. The retrieval time is 9.138s, and this method also has the following shortcomings: when the image classification error is to be retrieved, the retrieval accuracy is low.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院遙感與數(shù)字地球研究所)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚相坤;萬里紅;霍宏;方濤;;基于多結(jié)構(gòu)卷積神經(jīng)網(wǎng)絡(luò)的高分遙感影像飛機(jī)目標(biāo)檢測[J];計算機(jī)工程;2017年01期
2 張毅;張彥峰;;基于光譜-空間特征的遙感影像水體提取方法[J];甘肅科技;2016年11期
3 李德仁;張良培;夏桂松;;遙感大數(shù)據(jù)自動分析與數(shù)據(jù)挖掘[J];測繪學(xué)報;2014年12期
4 王杰;賈育衡;趙昕;;基于稀疏自編碼器的煙葉成熟度分類[J];煙草科技;2014年09期
5 段寶彬;韓立新;謝進(jìn);;基于堆疊稀疏自編碼的模糊C-均值聚類算法[J];計算機(jī)工程與應(yīng)用;2015年04期
6 高常鑫;桑農(nóng);;基于深度學(xué)習(xí)的高分辨率遙感影像目標(biāo)檢測[J];測繪通報;2014年S1期
7 馮霞;秦昆;崔衛(wèi)紅;陳一祥;李向輝;;高分辨率遙感影像目標(biāo)形狀特征多尺度描述與識別[J];遙感學(xué)報;2014年01期
8 程學(xué)旗;王元卓;靳小龍;;網(wǎng)絡(luò)大數(shù)據(jù)計算技術(shù)與應(yīng)用綜述[J];科研信息化技術(shù)與應(yīng)用;2013年06期
9 黃勁;孫洋;徐浩然;;稀疏編碼(Sparse coding)在圖像檢索中的應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2013年11期
10 李德仁;童慶禧;李榮興;龔健雅;張良培;;高分辨率對地觀測的若干前沿科學(xué)問題[J];中國科學(xué):地球科學(xué);2012年06期
相關(guān)博士學(xué)位論文 前4條
1 吳偉文;基于計算機(jī)視覺的目標(biāo)圖像檢索相關(guān)技術(shù)的研究[D];華南理工大學(xué);2012年
2 齊恒;基于內(nèi)容圖像檢索的關(guān)鍵技術(shù)研究[D];大連理工大學(xué);2012年
3 杜根遠(yuǎn);海量遙感圖像內(nèi)容檢索關(guān)鍵技術(shù)研究[D];成都理工大學(xué);2011年
4 程起敏;基于內(nèi)容的遙感影像庫檢索關(guān)鍵技術(shù)研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2004年
相關(guān)碩士學(xué)位論文 前4條
1 羅世操;基于深度學(xué)習(xí)的圖像語義提取與圖像檢索技術(shù)研究[D];東華大學(xué);2016年
2 王長明;遙感影像檢索技術(shù)的研究與實現(xiàn)[D];太原理工大學(xué);2011年
3 張金華;基于矩特征傅里葉描述的目標(biāo)形狀識別[D];上海交通大學(xué);2009年
4 陳文鋒;基于紋理特征的遙感圖像檢索技術(shù)研究[D];解放軍信息工程大學(xué);2007年
,本文編號:2400909
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2400909.html