基于子空間辨識算法的壓電懸臂梁振動主動控制研究
發(fā)布時間:2018-12-31 12:22
【摘要】:柔性材料的機械結(jié)構往往易于產(chǎn)生不必要的振動,其可導致干擾輻射,影響結(jié)構的性能。抑制振動的方法可分為被動和主動兩類,傳統(tǒng)的振動被動控制無法取得理想的控制效果,而振動主動控制具有響應速度快、自適應能力強、控制精度高等諸多優(yōu)點,成為目前振動控制領域的研究熱點。將壓電智能材料與振動主動控制結(jié)合起來,能夠使結(jié)構的振動主動控制更具優(yōu)越性。 本文針對壓電懸臂梁的振動控制問題,以一表面粘貼有壓電材料的懸臂梁作為實驗研究對象,設計了基于LABVIEW的振動信號實時采集系統(tǒng),并進行了振動控制實驗。在建模方法上,針對柔性結(jié)構的振動普遍存在復雜性、非線性和建模難的特點,本文跳過了復雜的機械-電壓建模,采用子空間辨識算法,從輸入輸出數(shù)據(jù)辨識出系統(tǒng)的參數(shù),并進行了詳細的理論推導。在控制器設計方面,鑒于子空間辨識方法無需得到系統(tǒng)模型的詳細參數(shù)就可以得到LQG控制器的最優(yōu)解,所以將子空間辨識和LQG最優(yōu)控制結(jié)合考慮,進行了LQG最優(yōu)控制器的設計,并給出了程序框圖和算法主要步驟。為了驗證算法的有效性,本文采用Matlab設計了子空間辨識仿真測試,并利用LABVIEW開發(fā)環(huán)境結(jié)合NI USB-6221數(shù)據(jù)采集卡、電荷放大器、PC機等硬件搭建了振動控制實物實驗平臺,進行了振動信號采集、分析、顯示和控制實驗。 實驗結(jié)果表明,該系統(tǒng)能夠?qū)崟r、有效地對懸臂梁進行振動控制,自適應能力強、控制精度高、控制效果理想。相比較于其他傳統(tǒng)方法,本文設計的控制方法可以在保證模型精確度的基礎上大大降低計算量,加快了系統(tǒng)的響應速度。
[Abstract]:Mechanical structures of flexible materials are often prone to produce unnecessary vibration, which can lead to interference radiation and affect the performance of structures. Vibration suppression methods can be divided into passive and active methods. Traditional passive vibration control can not achieve ideal control effect. Active vibration control has many advantages, such as fast response speed, strong adaptive ability, high control precision and so on. It has become a research hotspot in the field of vibration control. The combination of piezoelectric intelligent material and active vibration control can make the vibration active control of the structure more advantageous. Aiming at the vibration control of piezoelectric cantilever beam, a real-time vibration signal acquisition system based on LABVIEW is designed, and the vibration control experiment is carried out with a cantilever beam with piezoelectric material on the surface as the experimental research object. In view of the complexity, nonlinearity and difficulty in modeling the vibration of flexible structures, this paper skips the complex mechanical-voltage modeling and uses subspace identification algorithm to identify the parameters of the system from the input and output data. And the detailed theoretical derivation is carried out. In the aspect of controller design, since the subspace identification method can get the optimal solution of LQG controller without getting the detailed parameters of the system model, this paper combines subspace identification with LQG optimal control to design the LQG optimal controller. The program block diagram and the main steps of the algorithm are also given. In order to verify the validity of the algorithm, this paper designs a subspace identification simulation test using Matlab, and uses the LABVIEW development environment combined with NI USB-6221 data acquisition card, charge amplifier, PC computer and other hardware to build a physical vibration control experimental platform. Vibration signal acquisition, analysis, display and control experiments are carried out. The experimental results show that the system can control the vibration of cantilever beam in real time and effectively, has strong adaptive ability, high control precision and ideal control effect. Compared with other traditional methods, the control method designed in this paper can greatly reduce the computational complexity and accelerate the response speed of the system on the basis of ensuring the accuracy of the model.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TB535
本文編號:2396574
[Abstract]:Mechanical structures of flexible materials are often prone to produce unnecessary vibration, which can lead to interference radiation and affect the performance of structures. Vibration suppression methods can be divided into passive and active methods. Traditional passive vibration control can not achieve ideal control effect. Active vibration control has many advantages, such as fast response speed, strong adaptive ability, high control precision and so on. It has become a research hotspot in the field of vibration control. The combination of piezoelectric intelligent material and active vibration control can make the vibration active control of the structure more advantageous. Aiming at the vibration control of piezoelectric cantilever beam, a real-time vibration signal acquisition system based on LABVIEW is designed, and the vibration control experiment is carried out with a cantilever beam with piezoelectric material on the surface as the experimental research object. In view of the complexity, nonlinearity and difficulty in modeling the vibration of flexible structures, this paper skips the complex mechanical-voltage modeling and uses subspace identification algorithm to identify the parameters of the system from the input and output data. And the detailed theoretical derivation is carried out. In the aspect of controller design, since the subspace identification method can get the optimal solution of LQG controller without getting the detailed parameters of the system model, this paper combines subspace identification with LQG optimal control to design the LQG optimal controller. The program block diagram and the main steps of the algorithm are also given. In order to verify the validity of the algorithm, this paper designs a subspace identification simulation test using Matlab, and uses the LABVIEW development environment combined with NI USB-6221 data acquisition card, charge amplifier, PC computer and other hardware to build a physical vibration control experimental platform. Vibration signal acquisition, analysis, display and control experiments are carried out. The experimental results show that the system can control the vibration of cantilever beam in real time and effectively, has strong adaptive ability, high control precision and ideal control effect. Compared with other traditional methods, the control method designed in this paper can greatly reduce the computational complexity and accelerate the response speed of the system on the basis of ensuring the accuracy of the model.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TB535
【參考文獻】
相關期刊論文 前10條
1 孫東昌,王大鈞;梁振動控制的分布壓電單元法[J];北京大學學報(自然科學版);1996年05期
2 吳大方,劉安成,麥漢超,房元鵬;壓電智能柔性梁振動主動控制研究[J];北京航空航天大學學報;2004年02期
3 趙國偉,黃海,夏人偉;柔性自適應桁架及其振動最優(yōu)控制實驗[J];北京航空航天大學學報;2005年04期
4 陳震;薛定宇;郝麗娜;徐心和;;壓電智能懸臂梁主動振動最優(yōu)控制研究[J];東北大學學報(自然科學版);2010年11期
5 張京軍;何麗麗;高瑞貞;;基于模型降階的壓電柔性結(jié)構動力響應分析[J];工程力學;2009年07期
6 張京軍;何麗麗;王二成;高瑞貞;;壓電智能結(jié)構振動主動控制傳感器/驅(qū)動器的位置優(yōu)化設計[J];工程力學;2010年01期
7 司洪偉,李東旭;小波理論在大型空間智能結(jié)構振動控制中的應用[J];國防科技大學學報;2003年03期
8 楊濟臣;侯志強;王校鋒;;Bernoulli-Euler梁振動的人工神經(jīng)元網(wǎng)絡控制方法[J];海軍航空工程學院學報;2005年04期
9 任興侖,童昕;壓電智能梁振動控制的遺傳算法優(yōu)化設計[J];華僑大學學報(自然科學版);2002年01期
10 張利;謝毅;計時鳴;袁巧玲;;壓電智能結(jié)構的柔性梁振動主動控制系統(tǒng)仿真[J];機電工程;2009年09期
,本文編號:2396574
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2396574.html
最近更新
教材專著