基于壓縮感知的遙感影像彈性配準方法
發(fā)布時間:2018-12-09 13:51
【摘要】:針對遙感影像由于載荷類型、觀測角度、地形起伏等內外部因素造成的影像局部幾何畸變,而基于全局配準方法制約著影像配準精度的提高,基于像元的彈性配準方法可大幅提升遙感影像的配準精度,但是存在運算效率這一瓶頸等問題,該文利用像元彈性配準參數(shù)的稀疏性,提出一種基于壓縮感知的彈性配準方法。通過對遙感影像像元梯度幅值響應較強的點進行隨機抽樣,形成觀測樣本點集,采用彈性配準局部參數(shù)解算模型求解樣本點平移參數(shù);通過壓縮感知稀疏重構算法重構影像各像元平移參數(shù)。實驗表明,在配準精度差異較小和一定的參數(shù)設置條件下,該方法可顯著提高彈性配準運算速度。
[Abstract]:Aiming at the local geometric distortion of remote sensing image caused by internal and external factors such as load type, observation angle, topography fluctuation and so on, the improvement of image registration accuracy is restricted by global registration method. The elastic registration method based on pixel can greatly improve the registration accuracy of remote sensing image, but there are some problems such as the bottleneck of computing efficiency. This paper proposes an elastic registration method based on compressed sensing based on the sparsity of pixel elastic registration parameters. Through random sampling of the points with strong gradient amplitude response of image pixel, the observation sample point set is formed, and the translation parameter of the sample point is solved by using the elastic registration local parameter solution model. The translational parameters of each pixel are reconstructed by compressed sparse reconstruction algorithm. The experimental results show that this method can significantly improve the speed of elastic registration under the condition of little difference in registration accuracy and certain parameter setting.
【作者單位】: 中國科學院電子學研究所;中國科學院光電研究院;中科九度(北京)空間信息技術有限責任公司;
【基金】:中國科學院科技服務網(wǎng)絡計劃項目(KFJ-EW-STS-046) 國家高技術研究發(fā)展計劃項目(2014AA09A511) 高分辨率對地觀測系統(tǒng)重大專項(E0303/1315/05)
【分類號】:TP751
本文編號:2369459
[Abstract]:Aiming at the local geometric distortion of remote sensing image caused by internal and external factors such as load type, observation angle, topography fluctuation and so on, the improvement of image registration accuracy is restricted by global registration method. The elastic registration method based on pixel can greatly improve the registration accuracy of remote sensing image, but there are some problems such as the bottleneck of computing efficiency. This paper proposes an elastic registration method based on compressed sensing based on the sparsity of pixel elastic registration parameters. Through random sampling of the points with strong gradient amplitude response of image pixel, the observation sample point set is formed, and the translation parameter of the sample point is solved by using the elastic registration local parameter solution model. The translational parameters of each pixel are reconstructed by compressed sparse reconstruction algorithm. The experimental results show that this method can significantly improve the speed of elastic registration under the condition of little difference in registration accuracy and certain parameter setting.
【作者單位】: 中國科學院電子學研究所;中國科學院光電研究院;中科九度(北京)空間信息技術有限責任公司;
【基金】:中國科學院科技服務網(wǎng)絡計劃項目(KFJ-EW-STS-046) 國家高技術研究發(fā)展計劃項目(2014AA09A511) 高分辨率對地觀測系統(tǒng)重大專項(E0303/1315/05)
【分類號】:TP751
【相似文獻】
相關期刊論文 前1條
1 張紅穎;張加萬;孫濟洲;楊甲東;;基于層次B樣條的醫(yī)學圖像彈性配準方法[J];天津大學學報;2007年01期
相關碩士學位論文 前1條
1 孫亞蘭;基于改進互信息的多尺度彈性配準方法研究[D];湘潭大學;2008年
,本文編號:2369459
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2369459.html
最近更新
教材專著