四邊形網(wǎng)格質(zhì)量優(yōu)化的研究
[Abstract]:The quality of mesh has great influence on the accuracy and convergence of finite element and finite volume numerical simulation. Existing automatic quadrilateral mesh generation methods, such as quadrilateral tree method, forward propulsion method, paving method and so on, will inevitably produce poor quality elements, even illegal elements. The accuracy of numerical calculation is reduced, and even the analysis is stopped. In order to improve the accuracy of numerical simulation, it is necessary to optimize the finite element mesh to improve the mesh quality. In this paper, the quadrilateral mesh quality optimization method is studied from two aspects of node location optimization and grid topology optimization, and the corresponding mesh optimization program is developed, which is applied to the mesh generation of the actual two-dimensional flood analysis. On the premise of keeping the grid topology unchanged, the quality of the grid can be improved by moving the node position of the grid. Laplace smoothing algorithm is the most commonly used mesh quality optimization method. However, the Laplace smoothing algorithm can flip the cells and move the nodes out of the boundary during the processing of the concave area cells, which leads to the illegal of the units. Aiming at the problems of Laplace algorithm, this paper proposes a node location optimization method based on the steepest descent method. The objective function of mesh quality optimization is established. The node position is taken as the design variable, and the node position is optimized by optimizing the node position. Achieve the goal of improving grid quality. Compared with Laplace smoothing algorithm, the mesh quality of concave area can be guaranteed by the method based on node position optimization. In the case of too large or too small a node angle in a grid cell, for example, the inner angle on the boundary is close to 180. The number (or degree) of the elements around the internal node is greater than 5 or less than 3. It is difficult to improve the quality of the mesh by simply moving the position of the node. That is to change the connection of cell nodes to improve the quality of the grid. In this paper, a topology optimization method based on boundary optimization, shape optimization, connectivity optimization and dimension optimization is proposed. In the aspect of boundary optimization, a method of combining the boundary element with the adjacent element is proposed for the element near the triangle on the boundary, and then the merged local mesh is regenerated according to the set template. The element near the triangle on the boundary can be eliminated. For shape optimization, the angle is greater than 160. The method of merging and regenerating the large angle unit and the adjacent unit with large angle is proposed, which can eliminate the large angle unit and the illegal unit. In the aspect of connectivity optimization, various node connectivity modes are summarized. According to the degree values of nodes and their surrounding nodes, the existing patterns are matched. By changing the node connectivity of the unit, the degree of each node is close to the ideal value (internal node is 4). The quality of grid is improved significantly. In the aspect of dimension optimization, by merging with adjacent elements, the diagonal position of hexagonal region can be changed or the hexagonal region can be decomposed into three elements in view of the element whose ratio of the longest edge to the shortest edge is too large. It can effectively reduce the difference of mesh size and improve the quality of mesh. Based on the methods of node location optimization and mesh topology optimization proposed in this paper, a quadrilateral mesh quality optimization program based on VS2012 is developed with C language, and the actual quadrilateral mesh is optimized. The results show that, The optimization method proposed in this paper can effectively eliminate the units with poor quality and improve the mesh quality significantly.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TB115
【相似文獻】
相關(guān)期刊論文 前10條
1 潘子杰,楊文通;有限元四邊形網(wǎng)格劃分的兩種算法[J];機械設(shè)計與制造;2002年02期
2 張清萍,尚勇,趙國群;二維全四邊形網(wǎng)格的自動生成算法[J];山東大學學報(工學版);2002年03期
3 吳麗娟;趙麗娟;李柳;;海量空間數(shù)據(jù)點四邊形網(wǎng)格優(yōu)化[J];遼寧工程技術(shù)大學學報(自然科學版);2009年01期
4 王水林,葛修潤,章光,龐作會;復(fù)雜區(qū)域四邊形網(wǎng)格生成的基本模板法[J];巖石力學與工程學報;1999年04期
5 吳淑芳,李占國,管力銳,王艷春;四邊形網(wǎng)格被直線切割的混合調(diào)整法[J];長春光學精密機械學院學報;1998年02期
6 馬新武;王芳;趙國群;;具有內(nèi)部特征約束的四邊形網(wǎng)格生成方法[J];計算力學學報;2012年06期
7 何玉香,王學林,胡于進;一種新的四邊形的生成算法[J];華中科技大學學報(自然科學版);2003年02期
8 劉曉;駱少明;呂惠卿;;超限映射法的四邊形網(wǎng)格劃分技術(shù)研究[J];廣東工業(yè)大學學報;2006年01期
9 付成華;周洪波;;多介質(zhì)復(fù)雜區(qū)域四邊形網(wǎng)格自動剖分算法及應(yīng)用[J];長江科學院院報;2012年07期
10 王世軍,黃玉美,張廣鵬;一種全四邊形有限元網(wǎng)格生成方法─—堆砌法[J];機械工程學報;2000年10期
相關(guān)會議論文 前5條
1 郭曉霞;劉建生;陳慧琴;;平面任意區(qū)域四邊形網(wǎng)格的自動生成方法[A];第一屆全國幾何設(shè)計與計算學術(shù)會議論文集[C];2002年
2 吳麗娟;鄭冕;張彩明;;四邊形網(wǎng)格劃分過程中的邊界處理[A];計算機技術(shù)與應(yīng)用進展——全國第17屆計算機科學與技術(shù)應(yīng)用(CACIS)學術(shù)會議論文集(下冊)[C];2006年
3 施峰;張明磊;孫樹立;;基于“型-操作”的平面四邊形網(wǎng)格的拓撲優(yōu)化[A];北京力學會第18屆學術(shù)年會論文集[C];2012年
4 吳麗娟;齊維毅;李繼;;海量空間數(shù)據(jù)點四邊形網(wǎng)格劃分邊界優(yōu)化算法的實現(xiàn)[A];中國幾何設(shè)計與計算新進展2007——第三屆中國幾何設(shè)計與計算大會論文集[C];2007年
5 聶存云;舒適;;非結(jié)構(gòu)四邊形網(wǎng)格下的一類保對稱有限體元格式[A];全國計算物理學會第六屆年會和學術(shù)交流會論文摘要集[C];2007年
相關(guān)碩士學位論文 前10條
1 楊森;基于特征的四邊形網(wǎng)格生成[D];大連理工大學;2006年
2 馬良;具有內(nèi)部特征約束的四邊形網(wǎng)格生成方法研究[D];山東大學;2016年
3 孫濤;基于子映射法的四邊形網(wǎng)格生成方法研究[D];山東大學;2016年
4 王立亞;四邊形網(wǎng)格質(zhì)量優(yōu)化的研究[D];山東大學;2016年
5 李文升;一種基于曲面聚類分片的四邊形網(wǎng)格生成方法[D];大連理工大學;2006年
6 王龍;一類非結(jié)構(gòu)任意四邊形網(wǎng)格自動生成[D];湘潭大學;2001年
7 唐友宏;一種全四邊形網(wǎng)格生成算法及其在船舶有限元中的應(yīng)用[D];武漢理工大學;2002年
8 郭新強;邊界面法四邊形網(wǎng)格生成研究與應(yīng)用[D];湖南大學;2011年
9 蔣子飛;一種四邊形網(wǎng)格簡化算法的實現(xiàn)與改進[D];山東大學;2014年
10 劉虎;基于特征約束的四邊形網(wǎng)格劃分算法研究與實現(xiàn)[D];南京航空航天大學;2007年
,本文編號:2367642
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2367642.html