基于光譜解混和目標(biāo)優(yōu)化的高光譜圖像亞像元定位研究
[Abstract]:Hyperspectral images contain rich spectral information and are widely used in many fields and become one of the most important sources of information for Earth observation. However, due to the limitation of its imaging principle and the manufacturing technology of hyperspectral imager, the spatial resolution of hyperspectral images is generally low, and mixed pixels are widely used in images. For applications such as land cover mapping, shoreline extraction, change detection and landscape index estimation, spatial details of mixed pixel hinterland are extremely important, if the traditional hard classification method is used, It is incorrect to classify the mixed pixels in the image as any kind of feature. Sub-pixel location is an effective method to make up for the above deficiencies. Therefore, sub-pixel positioning technology is of great significance. Based on the spectral de-mixing of hyperspectral images and intelligent optimization algorithm, sub-pixel localization of hyperspectral images is studied in this paper. The main work of this paper includes: (1) briefly describing the background and practical significance of this study, consulting the relevant literature at home and abroad, and analyzing and summarizing it. This paper provides an important scientific reference and theoretical support for the improved sub-pixel localization method. (2) the related theories of spectral unmixing are introduced systematically, including the definition of spectral unmixing and its mathematical model. Then the typical method of spectral unmixing under pure pixel assumption is introduced. Finally, the typical method of spectral unmixing based on pure pixel assumption is briefly introduced. (3) the general framework of sub-pixel localization algorithm based on spectral deconvolution optimization is presented. The minimum circumference of the connected region of the image is determined as the objective function, and three different methods of calculating the circumference of the image are introduced, and the optimization algorithm suitable for sub-pixel location is further analyzed. In order to reduce the time complexity of the algorithm, and based on the spatial distribution of objects in the base area, a new iterative strategy of target optimization is proposed. Local analysis is used to replace global analysis. (4) the basic principles of genetic algorithm and binary particle swarm optimization algorithm are described respectively, and the specific applications of the two algorithms in sub-pixel localization, including the process of population representation and updating, are discussed. Combined with three different methods of calculating objective function, The application results of two optimization algorithms in sub-pixel location are compared. (5) the reason that the minimum circumference based on chain code length can not guarantee the optimal result is obtained by analyzing the existence of special cases in connected region. In this paper, we propose to modify the perimeter of isolated regions and consider the number of connected regions to construct cost functions. Finally, binary particle swarm optimization (BPSO) is used to realize sub-pixel localization. (6) the work done in this paper is summarized. The future development of hyperspectral image sub-pixel localization is prospected.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP751
【相似文獻】
相關(guān)期刊論文 前10條
1 陳躍紅;葛詠;;兩種基于空間相關(guān)性的遙感亞像元分類制圖方法對比分析[J];遙感技術(shù)與應(yīng)用;2012年05期
2 黃慧娟;禹晶;肖創(chuàng)柏;孫衛(wèi)東;;基于局部連續(xù)性與全局相似性的光譜保持型亞像元映射[J];自動化學(xué)報;2014年08期
3 車雙良,汶德勝;像元間隔對亞像元動態(tài)成像系統(tǒng)MTF的影響[J];光電工程;2002年02期
4 張旭,沈景鵬,楊國光;亞像元分析方法在空間坐標(biāo)一致性測量中的應(yīng)用[J];光學(xué)儀器;2005年01期
5 任武;葛詠;;遙感影像亞像元制圖方法研究進展綜述[J];遙感技術(shù)與應(yīng)用;2011年01期
6 凌峰;吳勝軍;肖飛;吳柯;李曉冬;;遙感影像亞像元定位研究綜述[J];中國圖象圖形學(xué)報;2011年08期
7 趙烈烽;張平;徐之海;;基于序列圖像的亞像元成像技術(shù)研究[J];儀器儀表學(xué)報;2006年S3期
8 王群明;王立國;劉丹鳳;王正艷;;基于最小二乘支持向量機的線性特征地物亞像元定位(英文)[J];紅外與激光工程;2012年06期
9 車雙良,汶德勝,李軼,張興社;亞像元動態(tài)成像技術(shù)中系統(tǒng)的調(diào)制傳遞函數(shù)[J];應(yīng)用光學(xué);2002年03期
10 楊懷棟;陳科新;何慶聲;金國藩;;亞像元光譜圖重建算法[J];光譜學(xué)與光譜分析;2009年12期
相關(guān)會議論文 前4條
1 蘭碩;劉明川;;基于亞像元成像技術(shù)的折軸三反射光學(xué)系統(tǒng)設(shè)計[A];第十屆全國光電技術(shù)學(xué)術(shù)交流會論文集[C];2012年
2 馮蜀青;肖建設(shè);校瑞香;蘇文將;吳素霞;;基于EOS/MODIS的亞像元火情監(jiān)測方法研究[A];農(nóng)業(yè)生態(tài)與衛(wèi)星遙感應(yīng)用技術(shù)學(xué)術(shù)交流會論文摘要集[C];2006年
3 尋麗娜;方勇華;;約束能量最小化算法在亞像元目標(biāo)檢測中的應(yīng)用[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
4 李兆霖;姚新程;郭葒蓮;程丙英;張道中;;CCD亞像元位移分辨率測量及其在光鑷系統(tǒng)中的應(yīng)用[A];第三屆全國現(xiàn)代生物物理技術(shù)學(xué)術(shù)討論會論文摘要匯編[C];2000年
相關(guān)博士學(xué)位論文 前2條
1 許雄;顧及地物空間特性的遙感影像亞像元定位理論與方法研究[D];武漢大學(xué);2013年
2 張洪恩;青藏高原中分辯率亞像元雪填圖算法研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2004年
相關(guān)碩士學(xué)位論文 前10條
1 張穎;基于MODIS資料的積雪亞像元制圖算法研究[D];蘭州大學(xué);2015年
2 王繼紅;線陣CCD亞像元超分辨率重建方法研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機械研究所);2015年
3 杭丹維;南疆覆膜農(nóng)田亞像元制圖及熱環(huán)境效應(yīng)定量測算[D];浙江大學(xué);2016年
4 范明陽;基于光譜解混和目標(biāo)優(yōu)化的高光譜圖像亞像元定位研究[D];杭州電子科技大學(xué);2016年
5 譚志敏;遙感影像亞像元定位算法研究[D];華中科技大學(xué);2013年
6 王群明;遙感圖像亞像元定位及相關(guān)技術(shù)研究[D];哈爾濱工程大學(xué);2012年
7 李曉俊;藍藻水華遙感提取的空間尺度效應(yīng)及亞像元定位研究[D];南京師范大學(xué);2014年
8 黃紫晗;高光譜影像亞像元目標(biāo)檢測方法研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機械研究所);2014年
9 沈銀河;高光譜圖像亞像元級目標(biāo)檢測的非線性方法研究[D];杭州電子科技大學(xué);2011年
10 王雪松;基于FPGA的智能視頻信號處理技術(shù)研究[D];長春理工大學(xué);2010年
,本文編號:2325544
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2325544.html