基于自適應(yīng)協(xié)同優(yōu)化算法的流程工業(yè)生產(chǎn)調(diào)度研究
[Abstract]:Production scheduling, as the core of production management in process enterprises, plays an important role in enhancing the comprehensive competitiveness and economic benefits of enterprises. Production scheduling in process industry is a typical NP-hard optimization problem with complexity, multi-constraint and multi-objective. Therefore, an efficient and feasible optimization algorithm is needed to solve the problem. Collaborative optimization (Collaborative Optimization,CO) is a new multidisciplinary optimization design algorithm, which decomposes the complex model into several parts, reduces the complexity of the system and reduces the difficulty of solving the problem. It has high application value in production scheduling field of process industry. The main contents of this paper are as follows: (1) an adaptive cooperative optimization algorithm (Self-adaptive Collaborative Optimization,SCO) is proposed to solve the problem of the lack of the ability to optimize the objective function at the subject level. Firstly, the cooperative inconsistency is introduced at the system level, and the dynamic relaxation factor is improved to make the optimal design point converge rapidly to the extremum point. Secondly, the consistency objective function and the subdiscipline optimal objective function are added as the subdiscipline objective function with dynamic weight at the subject level, and the consistency is considered and the subdiscipline independence is taken into account. Finally, the two-stage optimization process is used to eliminate the dynamic relaxation factor and the subdiscipline optimal objective function in the late iteration to prevent the convergence process from oscillating. The simulation results show that the SCO algorithm is insensitive to the initial point, and the optimization efficiency is improved significantly. (2) aiming at the complex production scheduling problem in the process industry, the simulation results show that the algorithm is not sensitive to the initial point, and the optimization efficiency is improved significantly. A discrete time based MILP (Mixed Integer Linear Programming) model for process industry was established and applied to the seven days production scheduling of saccharified brewing workshop in beer enterprises. SCO algorithm is used to decompose the model into seven sub-disciplines of single-day production scheduling in saccharification workshop and one sub-discipline of production scheduling in brewing workshop. At the same time, genetic algorithm is used to solve the SCO algorithm at the subject and system levels. Through the simulation and analysis of this case, the rationality of the model and the feasibility and efficiency of SCO algorithm used to solve the production scheduling problem in the process industry are verified.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB497
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙浩;榮岡;馮毅萍;;集成煉油企業(yè)生產(chǎn)與能量系統(tǒng)的生產(chǎn)計(jì)劃優(yōu)化[J];化工學(xué)報(bào);2015年01期
2 姚壯樂;陳超核;;改進(jìn)協(xié)同優(yōu)化算法在船舶概念設(shè)計(jì)中的應(yīng)用(英文)[J];船舶力學(xué);2014年12期
3 紀(jì)愛敏;殷旭;;基于自適應(yīng)松弛因子的協(xié)同優(yōu)化方法[J];計(jì)算機(jī)集成制造系統(tǒng);2014年07期
4 唐聃;黃健;;流水車間調(diào)度問題的啟發(fā)式算法研究[J];電子科技大學(xué)學(xué)報(bào);2013年06期
5 魏鋒濤;宋俐;李言;石坤;;改進(jìn)的多學(xué)科協(xié)同優(yōu)化方法[J];計(jì)算機(jī)集成制造系統(tǒng);2013年09期
6 李冬琴;楊永祥;陳智同;;一種改進(jìn)的協(xié)同優(yōu)化算法及其應(yīng)用[J];計(jì)算機(jī)工程與科學(xué);2013年01期
7 吳文瑞;黃海;吳蓓蓓;;遙感衛(wèi)星總體參數(shù)設(shè)計(jì)的建模與協(xié)同優(yōu)化[J];北京航空航天大學(xué)學(xué)報(bào);2012年10期
8 王柏琳;李鐵克;張春生;張文學(xué);孫彬;;基于動(dòng)態(tài)約束滿足的考慮連鑄機(jī)故障的煉鋼連鑄調(diào)度算法[J];計(jì)算機(jī)集成制造系統(tǒng);2011年10期
9 王文偉;李邦國;陳瀟凱;;基于協(xié)同優(yōu)化方法的汽車正面抗撞性優(yōu)化設(shè)計(jì)[J];北京理工大學(xué)學(xué)報(bào);2011年09期
10 王超;劉階萍;常偉濤;趙軍;;不確定條件下的作業(yè)車間生產(chǎn)調(diào)度綜述[J];裝備制造技術(shù);2011年04期
相關(guān)博士學(xué)位論文 前1條
1 粟華;飛行器高擬真度多學(xué)科設(shè)計(jì)優(yōu)化技術(shù)研究[D];西北工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 馬力;基于粒子群算法的多產(chǎn)品批處理生產(chǎn)調(diào)度問題研究[D];江西理工大學(xué);2015年
2 李寧;基于仿真的生產(chǎn)調(diào)度問題研究[D];蘭州理工大學(xué);2014年
3 高一;基于混合遺傳算法的作業(yè)車間多目標(biāo)優(yōu)化調(diào)度及系統(tǒng)開發(fā)研究[D];東華大學(xué);2014年
4 張順;基于改進(jìn)協(xié)同免疫算法的Flow Shop調(diào)度問題研究[D];華東理工大學(xué);2013年
5 王波;協(xié)同優(yōu)化技術(shù)在多學(xué)科復(fù)雜系統(tǒng)設(shè)計(jì)中的應(yīng)用[D];西安理工大學(xué);2010年
6 謝五峰;MES生產(chǎn)調(diào)度系統(tǒng)的研究[D];北京交通大學(xué);2007年
7 李濱虎;流程工業(yè)生產(chǎn)調(diào)度仿真方法研究[D];山東大學(xué);2006年
,本文編號(hào):2323418
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2323418.html