加裝非線性隔震裝置的變壓器抗震分析與樣機(jī)仿真研究
[Abstract]:Since transformers weigh hundreds of tons, UHV transformers even weigh thousands of tons, and new heavy-duty UHV transformers are still being developed and popularized, the frequency of seismic waves is low and the direction is very random. The traditional linear isolator has been unable to meet the actual needs. Linear isolator has good isolation effect for high frequency signal. Although active vibration isolation technology can meet the requirements of low frequency vibration isolation, it requires high stability of control system and environment. And for this kind of "stupid thick" heavy electrical equipment, the cost is high, maintenance and operation is complicated. Therefore, it is of great practical significance to design the nonlinear isolator used in the low-frequency isolation of transformers based on the existing seismic engineering of transformers, and to carry out the research on passive isolation of low-frequency and low-frequency transformers, which is of great practical significance to the aseismic engineering of transformers. Based on a geometric nonlinear SD oscillator theory proposed by Professor Cao Qingjie in 2006, a new quasi-zero stiffness isolation model is established, and a geometric nonlinear two-stage quasi-zero stiffness isolation device is designed for low frequency transformer isolation. Combined with theoretical derivation, numerical calculation and virtual prototype simulation technology, the device is demonstrated. The main contents of this paper are as follows: firstly, based on SD oscillator theory, a geometric nonlinear quasi-zero stiffness model is established, which is composed of isolated body, two cable-stayed springs and horizontal linear track. The nonlinear force-displacement characteristics and stiffness characteristics of the model are studied. The amplitude-frequency curves excited by harmonic acceleration waves are analyzed, and the acceleration transfer rate and displacement transfer rate are derived. The effects of different sensitive parameters on the above two indexes are discussed. Secondly, the geometric nonlinear quasi-zero stiffness model under the action of seismic waves is numerically approximate calculated by Runge-Kutta method, and the influence of different system parameters on the acceleration transfer rate is obtained. Finally, the optimum physical parameters for transformer isolation device are calculated with acceleration transfer rate as the target. Finally, according to the optimum parameters of numerical calculation, the structural design of the two-stage quasi-zero stiffness isolation device with geometric nonlinearity is carried out. Virtual prototype simulation is carried out by using multi-rigid body dynamics software ADAMS, and three typical directions under horizontal seismic wave excitation are simulated, namely X axis, Y axis and 45? Direction. The response indexes of the three directions are obtained, and the accuracy of the theoretical derivation and numerical calculation is verified. At the same time, in order to compare with the linear isolation system, the equivalent two-stage isolation device is simulated and analyzed at the end of the paper. Finally, it is concluded that the vibration isolation frequency of the geometric nonlinear two-stage quasi zero stiffness isolation device is lower than that of the linear two-stage isolation device, the resonance peak suppression effect is better, and the seismic wave isolation is more effective, thus ensuring the safety and reliability of the transformer. Run effectively.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB535.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程永鋒;朱祝兵;邱寧;盧智成;魯先龍;孫宇晗;;特高壓電氣設(shè)備抗震試驗(yàn)共振拍波適用性及合理地震動(dòng)輸入研究[J];高電壓技術(shù);2015年05期
2 尤紅兵;趙鳳新;;蘆山7.0級(jí)地震及電力設(shè)施破壞原因分析[J];電力建設(shè);2013年08期
3 朱瑞民;李東亮;齊立忠;李科文;;變電站地震災(zāi)害分析與抗震設(shè)計(jì)[J];電力建設(shè);2013年04期
4 曹枚根;范榮全;李世平;曹琮;盧智成;張雪松;;大型電力變壓器及套管隔震體系的設(shè)計(jì)與應(yīng)用[J];電網(wǎng)技術(shù);2011年12期
5 曹慶杰;田瑞蘭;韓彥偉;;SD振子的非線性動(dòng)力學(xué)特征研究[J];石家莊鐵道大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
6 李吉濤;楊慶山;;地震波基線漂移的處理方法[J];北京交通大學(xué)學(xué)報(bào);2010年01期
7 程永鋒;朱全軍;盧智成;;變電站電力設(shè)施抗震措施研究現(xiàn)狀與發(fā)展趨勢(shì)[J];電網(wǎng)技術(shù);2008年22期
8 孟敏婕;陳玲俐;葉志明;;油浸式高壓變壓器地震易損性分析[J];世界地震工程;2007年03期
9 李子國(guó),湯國(guó)君,景麗英,于海年,郭振巖;液體-固體相互作用的電力變壓器結(jié)構(gòu)的地震響應(yīng)分析[J];地震工程與工程振動(dòng);1998年01期
10 李子國(guó),景麗英;S7-200/10 變型變壓器抗震分析[J];地震工程與工程振動(dòng);1997年04期
相關(guān)博士學(xué)位論文 前2條
1 孟令帥;新型準(zhǔn)零剛度隔振器的設(shè)計(jì)和特性研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2015年
2 郭振巖;變壓器抗地震性能的研究[D];沈陽(yáng)工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 王保勵(lì);一類幾何非線性準(zhǔn)零剛度系統(tǒng)的隔振理論與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2016年
,本文編號(hào):2318742
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2318742.html