天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 工程管理論文 >

基于人工魚群優(yōu)化算法中央空調(diào)制冷系統(tǒng)優(yōu)化研究

發(fā)布時(shí)間:2018-11-04 19:24
【摘要】:近年來,隨著中國對節(jié)能減排的重視,提高能源利用率,成為人們的共識,建筑能耗成為我國主要能源消耗領(lǐng)域之一,而中央空調(diào)是建筑能耗的最主要環(huán)節(jié),減少中央空調(diào)系統(tǒng)的能耗,提高空調(diào)系統(tǒng)的能效比,成為一個(gè)關(guān)鍵性的課題。 首先,綜述了中央空調(diào)系統(tǒng)節(jié)能技術(shù)的發(fā)展和研究現(xiàn)狀。分析了中央空調(diào)系統(tǒng)制冷系統(tǒng)的結(jié)構(gòu)與工藝原理,它是在蒸發(fā)器內(nèi)被氣化的制冷劑流經(jīng)制冷機(jī)組的壓縮機(jī)時(shí)被壓縮成高壓高溫的氣體,當(dāng)高溫高壓的制冷劑流經(jīng)冷凝器時(shí)候被來自冷卻塔的冷卻水冷卻成低溫高壓的氣體,低溫高壓的制冷劑通過膨脹閥后重新變成了低溫低壓的液體,而后再在蒸發(fā)器內(nèi)氣化,完成一次能量循環(huán)。將能量守恒定律和熱傳導(dǎo)作為依據(jù),,針對中央空調(diào)制冷系統(tǒng)各工作環(huán)節(jié)的能耗特點(diǎn)的主要工藝流程,分析制冷設(shè)備的特點(diǎn),運(yùn)用最小二乘法建立了關(guān)于制冷系統(tǒng)中能耗設(shè)備(制冷機(jī)、冷卻水泵和冷卻塔風(fēng)扇)的靜態(tài)模型。對中央空調(diào)制冷系統(tǒng)的非線性、對變量系統(tǒng)特性,確定了制冷系統(tǒng)的優(yōu)化目標(biāo)和約束條件。其次,分析了多目標(biāo)多約束條件的智能優(yōu)化算法--遺傳算法、粒子群算法、蟻群算法和基本群群算法特點(diǎn),針對常用的智能優(yōu)化算法缺點(diǎn)和中央空調(diào)制冷系統(tǒng)的運(yùn)行特點(diǎn),提出了改進(jìn)魚群算法,利用改進(jìn)的人工魚群優(yōu)化算法求解中央空調(diào)制冷系統(tǒng)的最小功率。 通過改變算法中的人工魚群的視野與步長的大小,提出了視步系數(shù),克服了基本人工魚群優(yōu)化算法的收斂速度慢,收斂精度低,出現(xiàn)局部最優(yōu),提高了優(yōu)化算法的搜索速度和精度,為中央空調(diào)制冷系統(tǒng)的節(jié)能優(yōu)化提供了一種新的有效方法。 最后,通過MATLAB仿真程序,對中央空調(diào)制冷系在不同外界環(huán)境條件下,分別用基本和改進(jìn)后的人工魚群優(yōu)化算法進(jìn)行了仿真實(shí)驗(yàn),從仿真圖可知改進(jìn)后的人工魚群優(yōu)化算法明顯提高了收斂速度,同時(shí)也提高了收斂精度。
[Abstract]:In recent years, with the importance of energy saving and emission reduction in China, it has become a common understanding for people to improve energy utilization efficiency. Building energy consumption has become one of the main energy consumption areas in China, and central air conditioning is the most important link in building energy consumption. Reducing the energy consumption of central air-conditioning system and improving the energy-efficiency ratio of air-conditioning system has become a key issue. Firstly, the development and research status of energy-saving technology in central air-conditioning system are summarized. The structure and technological principle of the refrigeration system of central air conditioning system are analyzed. The refrigerant vaporized in the evaporator is compressed into a high pressure and high temperature gas as it passes through the compressor of the refrigeration unit. When the high-temperature and high-pressure refrigerant flows through the condenser, it is cooled by the cooling water from the cooling tower into a low-temperature and high-pressure gas. The low-temperature and high-pressure refrigerant passes through the expansion valve to become a low-temperature and low-pressure liquid again, and then vaporized in the evaporator. Complete an energy cycle. Based on the law of conservation of energy and heat conduction, the characteristics of refrigeration equipment are analyzed according to the main technological process of energy consumption characteristics of each working link of central air-conditioning refrigeration system. The static model of energy consumption equipment (refrigerator, cooling water pump and cooling tower fan) in refrigeration system is established by using the least square method. For the nonlinearity of central air-conditioning refrigeration system and the characteristic of variable system, the optimization objective and constraint conditions of refrigeration system are determined. Secondly, the characteristics of multi-objective and multi-constraint intelligent optimization algorithms, such as genetic algorithm, particle swarm optimization algorithm, ant colony algorithm and basic swarm optimization algorithm, are analyzed, aiming at the shortcomings of common intelligent optimization algorithms and the operation characteristics of central air-conditioning refrigeration system. An improved fish swarm algorithm is proposed. The improved artificial fish swarm optimization algorithm is used to solve the minimum power of central air-conditioning refrigeration system. By changing the visual field and step size of artificial fish swarm in the algorithm, the apparent step coefficient is proposed, which overcomes the slow convergence speed, low convergence precision and local optimum of the basic artificial fish swarm optimization algorithm. The search speed and precision of the optimization algorithm are improved, which provides a new and effective method for energy saving optimization of central air-conditioning refrigeration system. Finally, through the MATLAB simulation program, the simulation experiments are carried out on the central air-conditioning refrigeration system under different environment conditions, respectively, using the basic and improved artificial fish swarm optimization algorithm. From the simulation diagram, we can see that the improved artificial fish swarm optimization algorithm obviously improves the convergence speed and the convergence accuracy.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP18;TB657

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 毛強(qiáng);郭亞軍;戚宇;;基于粒子群優(yōu)化算法的復(fù)雜大群體評價(jià)方法[J];系統(tǒng)工程;2013年04期

2 申鉉京;劉陽陽;黃永平;徐鐵;何習(xí)文;;求解TSP問題的快速蟻群算法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2013年01期

3 陳志敏;薄煜明;吳盤龍;段文勇;劉正凡;;基于自適應(yīng)粒子群優(yōu)化的新型粒子濾波在目標(biāo)跟蹤中的應(yīng)用[J];控制與決策;2013年02期

4 徐定杰;劉明凱;沈鋒;祝麗業(yè);;基于自適應(yīng)遺傳算法的DGPS整周模糊度快速解算[J];航空學(xué)報(bào);2013年02期

5 張長興;彭坤;李華偉;高巖松;;逆流式冷卻塔換熱性能的影響因素[J];能源工程;2013年01期

6 侯雪梅;劉偉;高飛;李志博;王婧;;基于群智能的模糊多目標(biāo)軟件可靠性冗余分配[J];計(jì)算機(jī)應(yīng)用;2013年04期

7 李擎;張超;陳鵬;尹怡欣;;一種基于粒子群參數(shù)優(yōu)化的改進(jìn)蟻群算法[J];控制與決策;2013年06期

8 曲良東;何登旭;吳盡昭;;一種群模式全局搜索算法[J];模式識別與人工智能;2013年06期

9 盧錦玲;苗雨陽;張成相;任惠;;基于改進(jìn)多目標(biāo)粒子群算法的含風(fēng)電場電力系統(tǒng)優(yōu)化調(diào)度[J];電力系統(tǒng)保護(hù)與控制;2013年17期

10 宋錦娟;白艷萍;;基于改進(jìn)蟻群算法的最短路徑問題研究及應(yīng)用[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2013年03期



本文編號:2310912

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2310912.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4330f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com