基于Wigner高階譜的水下簡單形狀目標(biāo)回波處理
[Abstract]:For active sonar target detection and recognition, which is a research hotspot in underwater acoustic field, how to detect the target echo from the received signal and extract the target characteristic information from the echo is the foundation and the key technology. According to the distribution characteristics of target echo and background noise in time-frequency domain and the time-frequency difference between the bright spots of target echo, people prefer to use time-frequency method to process the non-stationary signal. With the increasing interest in higher-order spectra, high-order spectrum has become an important tool for analyzing non-Gao Si processes and extracting more spectral information from signals, but it is not suitable for non-stationary processes. In this paper, a time-varying high-order spectrum, Wigner high-order spectrum, is proposed for target echo detection and bright spot extraction. Based on the definition of Wigner high-order spectrum, the basic expressions of Wigner bispectrum and Wigner trispectrum of CW signal are derived. The ability of Wigner high-order spectrum to detect CW signal and LFM signal under the background of Gao Si white noise is simulated and analyzed briefly. In this paper, the crossover of Wigner bispectrum and Wigner trispectrum of multicomponent CW signal and LFM signal is studied. The different characteristics of crossover terms in different signal forms are given, and the shortcomings of the method of suppressing crossover terms in fuzzy domain kernel function are pointed out. In view of this shortcoming, according to the basic algorithm of morphological processing and its function, combined with the characteristics of multi-component Wigner bispectrum and Wigner trispectral crossover, this paper proposes a multi-component signal Wigner high-order spectral crossover processing method based on morphological processing. The effectiveness of the method is verified by simulation. In addition, according to the distribution of noise and signal in Wigner higher-order spectral domain, it is pointed out that this method can also be used for noise suppression. Based on the target echo bright spot model, this paper presents the number of geometric highlights and the time delay difference between them under different incident angles of typical underwater target model, and analyzes their higher-order time-frequency characteristics. Based on morphological cross term processing method, Wigner high order spectrum is used to deal with the bright spot of target echo. Through simulation analysis, the application range of this method is given. Finally, according to the experimental data processing results, the correctness of the target echo bright spot model is verified, and the validity of the geometric bright spot extraction method combined with Wigner high order spectrum and morphology is verified. The effectiveness of the above method in target echo detection is verified.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB56
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡劍華;龔玉蓉;王先春;;利用EMD-Wigner高階矩譜的齒輪故障診斷方法[J];振動.測試與診斷;2013年06期
2 陳云飛;李桂娟;王振山;張明偉;賈兵;;水中目標(biāo)回波亮點(diǎn)統(tǒng)計(jì)特征研究[J];物理學(xué)報(bào);2013年08期
3 陳曦;許建中;;Wigner高階譜在彈丸膛內(nèi)運(yùn)動分析中的應(yīng)用[J];南京理工大學(xué)學(xué)報(bào);2012年03期
4 張培珍;王朔中;;聲散射預(yù)報(bào)中目標(biāo)斷面圖像的快速旋轉(zhuǎn)[J];聲學(xué)技術(shù);2011年04期
5 劉晨晨;桑恩方;張之猛;;基于Radon變換的水聲圖像矩特征提取與分類[J];計(jì)算機(jī)工程;2007年17期
6 唐艷;湯井田;;基于Wigner高階譜的ECG信號分析[J];電子科技大學(xué)學(xué)報(bào);2007年01期
7 郝志華;馬孝江;;高階非線性時(shí)頻表示在故障特征提取中的應(yīng)用[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年02期
8 孫駿,陳淑珍,鄒煉;Wigner高階矩譜在分析相控陣探地雷達(dá)數(shù)據(jù)中的應(yīng)用[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2004年05期
9 杜寧平,史軍,朱紅濤;高階統(tǒng)計(jì)量分析在油氣預(yù)測中的應(yīng)用[J];海洋地質(zhì)動態(tài);2004年08期
10 劉晨晨,桑恩方;基于數(shù)學(xué)形態(tài)學(xué)的水聲圖像處理[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2003年S1期
相關(guān)會議論文 前1條
1 沈民奮;;非平穩(wěn)信號的高階時(shí)頻分析[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
相關(guān)碩士學(xué)位論文 前3條
1 朱旭;基于時(shí)頻分析與圖像形態(tài)學(xué)的目標(biāo)回波檢測[D];哈爾濱工程大學(xué);2013年
2 劉玉民;基于二次型時(shí)頻分布理論的油氣檢測技術(shù)研究[D];吉林大學(xué);2012年
3 陳強(qiáng);基于水聲圖像水下目標(biāo)識別的技術(shù)研究[D];哈爾濱工程大學(xué);2012年
,本文編號:2243228
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2243228.html