潛熱型控溫包裝系統(tǒng)傳熱模型與試驗(yàn)研究
[Abstract]:Temperature control of logistics environment is the key factor to ensure the quality and safety of temperature-sensitive product logistics process.Passive cold chain logistics technology based on temperature-controlled packaging is an effective means to realize product logistics temperature control, especially to ensure the "last kilometer" temperature control of logistics. Improvement and characterization is the key to design and optimize the passive temperature-controlled packaging system.Based on the latent heat-controlled packaging system as the research object, the research on improving the thermal conductivity and performance characterization of refrigerant storage was carried out, the mechanism and theory of phase change heat transfer in temperature-controlled packaging were discussed, and the phase change heat transfer model of temperature-controlled packaging was established. The main research contents include: (1) Optimizing the thermal conductivity of the regenerant and modeling the effective thermal conductivity of the dispersion system by doping high thermal conductivity powder (aluminum powder, copper powder and graphite powder) into the liquid regenerator, and doping the thermal conductivity liquid (water) into the phase change microcapsule regenerator (micro-PCMs). The effect of dopants on the effective thermal conductivity of the regenerator was studied. The results showed that the effective thermal conductivity of the liquid regenerator increased with the increase of the powder content, but the effective thermal conductivity of the system decreased significantly when the powder content reached the critical value. When the mass fraction of icro-PCMs is less than the critical value, the increase rate of the effective thermal conductivity of the system decreases significantly. Taking the modified regenerator doped with graphite powder as an example, the effect of doping on the storage rate and temperature control performance is studied. The experimental results show that when the mass fraction of dispersed phase is higher than the critical value, the vapor phase will appear in the system and the thermal conductivity of the system will be significantly reduced. In this paper, a FP model for predicting the effective thermal conductivity of the disperse system with high disperse phase mass fraction is established, and the validity of the model is verified by experiments. Finally, the prediction model of the effective thermal conductivity of the disperse system is unified and characterized based on the FP model, and the distribution diagram of the effective thermal conductivity of the solid-liquid-gas three-phase disperse system is constructed. Based on Fourier's law of heat conduction and conservation of energy, a one-dimensional phase change heat transfer model for temperature-controlled packaging under constant and variable temperature conditions was established. The results show that the surface heat transfer coefficient is mainly affected b y the thermal conductivity of the insulating wall wk, the excess temperature y, the thickness of the insulating wall b, the latent heat L of PCM and the variable temperature environment. The wall thermal conductivity wk, excess temperature y, wall thickness B and PCM latent heat L have no significant effect on the surface heat transfer coefficient and the moving speed of solid-liquid interface. The moving velocity of the solid-liquid interface decreases with time when the thermal conductivity of the insulating wall is equal to that of the insulating wall. The phase change heat transfer process in the variable temperature environment can be approximately simplified as a linear superposition of several phase change heat transfer processes in the constant temperature environment. The results show that the degenerate solution of the model is in agreement with the Neumann analytical solution, and the Neumann analytical solution is a special case of the model. The results of the model are in agreement with those of the Mehling model. Secondly, a one-dimensional phase change heat transfer test is carried out by a self-made one-dimensional phase change heat transfer test facility. The results show that the one-dimensional phase change heat transfer model established in this paper can effectively describe the one-dimensional phase change heat transfer process in the initial stage of PCM melting. (3) According to the one-dimensional phase change heat transfer model and its regularity, the one-dimensional phase change heat transfer model for temperature control packaging is proposed, and the empirical formulas of heat transfer coefficient on the surface of temperature control packaging and thermal resistance of insulation container system are established. (4) Propose the reliable boundary and design method of temperature-controlled packaging combined with the time prediction model of temperature-controlled packaging, put forward the concept and construction method of reliable boundary of temperature-controlled packaging, and then put forward the design method of temperature-controlled packaging. Design method to develop temperature control package design evaluation software
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB486
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周業(yè)濤,關(guān)振群,顧元憲;求解相變傳熱問題的等效熱容法[J];化工學(xué)報(bào);2004年09期
2 羅小平;;微細(xì)通道相變傳熱的動(dòng)力學(xué)特性[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年07期
3 張奕;胡洪;翁雯;劉佳;祝用華;;蓄冷冰球中相變傳熱過程的數(shù)值分析[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 ;真空式相變傳熱廢熱回收熱水器[J];北京節(jié)能;1985年04期
5 王世宇;;真空式相變傳熱器[J];機(jī)械工程師;1985年04期
6 馮毅;馬義偉;;相變傳熱的強(qiáng)化[J];節(jié)能;1987年10期
7 曾欣,辛明道;耦合求解焓及移動(dòng)邊界位置的多維相變傳熱問題的數(shù)值焓法[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
8 管建春,朱華,阿迪爾M.S,屠傳經(jīng);儲(chǔ)冰球相變傳熱數(shù)值計(jì)算及分析[J];浙江大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年01期
9 王發(fā)剛,李瑞陽,劉永啟,郁鴻凌;相變傳熱相關(guān)問題的分子動(dòng)力學(xué)模擬及研究[J];上海理工大學(xué)學(xué)報(bào);2003年02期
10 顧元憲;周業(yè)濤;趙國忠;;相變傳熱問題的靈敏度分析與優(yōu)化設(shè)計(jì)方法[J];力學(xué)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前7條
1 張麗蓉;解國珍;;論述相變傳熱問題的一種數(shù)值解法[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會(huì)資料集[C];2010年
2 馬學(xué)虎;;強(qiáng)化相變傳熱的新思路:液固表面自由能差效應(yīng)[A];第二屆全國傳遞過程學(xué)術(shù)研討會(huì)論文集[C];2003年
3 王學(xué)生;徐宏;侯峰;劉阿龍;;強(qiáng)化相變傳熱換熱管束的制造技術(shù)及性能研究[A];第六屆全國壓力容器學(xué)術(shù)會(huì)議壓力容器先進(jìn)技術(shù)精選集[C];2005年
4 周繼軍;;微尺度相變傳熱中的兩相間歇流動(dòng)[A];上海市制冷學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文集[C];2013年
5 左海濱;張建良;楊天鈞;;考慮相變傳熱的爐缸傳熱模型的研究與應(yīng)用[A];2008年全國冶金物理化學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
6 楊海天;何宜謙;;基于Sigmoid函數(shù)光滑化的等效熱容法求解相變傳熱問題[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
7 任川;吳清松;;環(huán)路熱管蒸發(fā)器主芯中滲流和相變傳熱現(xiàn)象的數(shù)學(xué)模型和數(shù)值模擬[A];首屆全國航空航天領(lǐng)域中的力學(xué)問題學(xué)術(shù)研討會(huì)論文集(上冊(cè))[C];2004年
相關(guān)重要報(bào)紙文章 前4條
1 記者王世煥、許祖華;我低溫相變傳熱技術(shù)獲重大突破[N];人民日?qǐng)?bào);2003年
2 王世煥 許祖華;我自主開發(fā)低溫相變傳熱技術(shù)[N];中國化工報(bào);2003年
3 張苓;我國低溫相變傳熱技術(shù)取得重大突破[N];中國冶金報(bào);2003年
4 ;我國低溫相變傳熱技術(shù)取得重大突破[N];云南經(jīng)濟(jì)日?qǐng)?bào);2003年
相關(guān)博士學(xué)位論文 前1條
1 潘嘹;潛熱型控溫包裝系統(tǒng)傳熱模型與試驗(yàn)研究[D];江南大學(xué);2016年
相關(guān)碩士學(xué)位論文 前8條
1 許名揚(yáng);內(nèi)燃機(jī)附壁油膜蒸發(fā)數(shù)值模擬[D];大連理工大學(xué);2015年
2 柯彬彬;圓管外石蠟相變傳熱過程數(shù)值模擬及傳熱強(qiáng)化[D];江蘇大學(xué);2016年
3 周業(yè)濤;相變傳熱問題的靈敏度分析與優(yōu)化設(shè)計(jì)方法[D];大連理工大學(xué);2002年
4 許彬;結(jié)構(gòu)化網(wǎng)格中冰水相變傳熱過程的數(shù)值計(jì)算[D];南京理工大學(xué);2008年
5 賈月;一種用于大功率LED冷卻的高強(qiáng)度散熱器的設(shè)計(jì)及性能測(cè)試[D];中國科學(xué)院研究生院(工程熱物理研究所);2011年
6 趙學(xué)政;高溫?zé)岜霉r下自然工質(zhì)混合物兩類傳熱窄點(diǎn)的實(shí)驗(yàn)研究[D];天津大學(xué);2010年
7 李金峰;豎直管相變傳熱強(qiáng)化實(shí)驗(yàn)研究[D];華東理工大學(xué);2014年
8 胡聰香;多孔表面相變傳熱及其應(yīng)用實(shí)例-Vapor Chamber[D];清華大學(xué);2008年
,本文編號(hào):2221507
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2221507.html