天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于模糊神經(jīng)網(wǎng)絡(luò)梁結(jié)構(gòu)主動(dòng)振動(dòng)控制算法研究

發(fā)布時(shí)間:2018-09-01 16:00
【摘要】:壓電材料作為一種智能材料,同時(shí)具備傳感器與作動(dòng)器的功能,由于其能夠減輕結(jié)構(gòu)質(zhì)量,所以廣泛應(yīng)用于結(jié)構(gòu)振動(dòng)控制中。本文使用模糊控制,模糊神經(jīng)網(wǎng)絡(luò)(FNN)控制以及基于可變學(xué)習(xí)效率的FNN控制作為控制算法,針對(duì)粘貼有壓電材料的懸臂梁進(jìn)行主動(dòng)振動(dòng)控制研究。 首先本文利用歐拉伯努利梁理論推導(dǎo)了壓電懸臂梁的運(yùn)動(dòng)微分方程,對(duì)梁在自由狀態(tài)下受到?jīng)_擊激勵(lì)時(shí)的時(shí)間位移曲線進(jìn)行了仿真。然后,,闡述了模糊控制的基本理論和模糊控制器的設(shè)計(jì)方法由此設(shè)計(jì)了模糊控制器。由于模糊控制器不需要被控對(duì)象的精確數(shù)學(xué)模型,所以廣泛應(yīng)用于各種工業(yè)控制器中。但是模糊控制器不具備自學(xué)習(xí)能力,不能自動(dòng)適應(yīng)外界環(huán)境的改變,所以本文提出了模糊神經(jīng)網(wǎng)絡(luò)控制算法。模糊神經(jīng)網(wǎng)絡(luò)結(jié)合了模糊系統(tǒng)不需要被控對(duì)象的精確數(shù)學(xué)模型和神經(jīng)網(wǎng)絡(luò)具備自學(xué)的優(yōu)點(diǎn),在智能控制中受到技術(shù)人員的關(guān)注。 然而,模糊神經(jīng)網(wǎng)絡(luò)收斂速度常常不理想,導(dǎo)致訓(xùn)練時(shí)間過(guò)長(zhǎng),不適用于實(shí)時(shí)自動(dòng)控制系統(tǒng);诖藛(wèn)題,本文提出了一種基于可變學(xué)習(xí)速率的模糊神經(jīng)網(wǎng)絡(luò)優(yōu)化方法。優(yōu)化后的FNN控制系統(tǒng)在每次訓(xùn)練中都選擇最優(yōu)的學(xué)習(xí)速率,所以能夠在系統(tǒng)允許最大誤差前提下達(dá)到提高神經(jīng)網(wǎng)絡(luò)的收斂速度的效果。 本文采用MATLAB來(lái)測(cè)試模糊系統(tǒng),F(xiàn)NN系統(tǒng),和優(yōu)化后的FNN控制系統(tǒng)對(duì)壓電懸臂梁的振動(dòng)控制效果,通過(guò)仿真,可以得到各算法在振動(dòng)抑制中的控制效果。同時(shí)仿真說(shuō)明基于可變學(xué)習(xí)速率優(yōu)化方法能夠加快網(wǎng)絡(luò)收斂從而提高控制算法性能。
[Abstract]:As a kind of intelligent material, piezoelectric material has the functions of sensors and actuators. Because of its ability to reduce the structure quality, piezoelectric materials are widely used in structural vibration control. In this paper, fuzzy control, fuzzy neural network (FNN) control and FNN control based on variable learning efficiency are used as control algorithms to study active vibration control of cantilever beams with piezoelectric materials. In this paper, the differential equation of motion of piezoelectric cantilever beam is derived by using Eulerian Bernoulli beam theory, and the time displacement curve of piezoelectric cantilever beam subjected to shock excitation is simulated. Then, the basic theory of fuzzy control and the design method of fuzzy controller are expounded. Fuzzy controller is widely used in various industrial controllers because it does not need the precise mathematical model of the controlled object. However, the fuzzy controller does not have the ability of self-learning and can not adapt to the change of the external environment automatically. Therefore, a fuzzy neural network control algorithm is proposed in this paper. The fuzzy neural network (FNN) combines the advantages of the precise mathematical model of the fuzzy system without the object under control and the neural network with the advantages of self-study, so it has attracted the attention of technicians in intelligent control. However, the convergence speed of fuzzy neural networks is often not ideal, which leads to long training time and is not suitable for real-time automatic control systems. Based on this problem, a fuzzy neural network optimization method based on variable learning rate is proposed. The optimized FNN control system selects the optimal learning rate in each training, so it can improve the convergence speed of neural network under the premise of the maximum error allowed by the system. In this paper, MATLAB is used to test the vibration control effect of the fuzzy system and the optimized FNN control system for piezoelectric cantilever beam. Through simulation, the control effect of each algorithm in vibration suppression can be obtained. At the same time, the simulation shows that the algorithm based on variable learning rate optimization can accelerate the convergence of the network and improve the performance of the control algorithm.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TB535

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 羅世彬,羅文彩,王振國(guó);基于試驗(yàn)設(shè)計(jì)和響應(yīng)面近似的高超聲速巡航飛行器多學(xué)科設(shè)計(jì)優(yōu)化[J];導(dǎo)彈與航天運(yùn)載技術(shù);2003年06期

2 陳文俊;壓電材料在柔性結(jié)構(gòu)控制中的應(yīng)用——國(guó)外壓電學(xué)研究資料綜述[J];飛航導(dǎo)彈;1999年03期

3 羅世彬,羅文彩,王振國(guó);高超聲速巡航飛行器機(jī)體/推進(jìn)系統(tǒng)一體化設(shè)計(jì)參數(shù)靈敏度分析[J];國(guó)防科技大學(xué)學(xué)報(bào);2003年04期

4 曹青松,周繼惠;MATLAB在神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)中的應(yīng)用[J];華東交通大學(xué)學(xué)報(bào);2004年04期

5 邱志成;智能結(jié)構(gòu)及其在振動(dòng)主動(dòng)控制中的應(yīng)用[J];航天控制;2002年04期

6 王加春,李旦,董申;機(jī)械振動(dòng)主動(dòng)控制技術(shù)的研究現(xiàn)狀和發(fā)展綜述[J];機(jī)械強(qiáng)度;2001年02期

7 林俊,章兢;反向傳播神經(jīng)網(wǎng)絡(luò)收斂性的探討[J];計(jì)算機(jī)與現(xiàn)代化;2005年07期

8 張君英;韓軍輝;;結(jié)構(gòu)振動(dòng)被動(dòng)控制方法概述及應(yīng)用[J];山西建筑;2007年19期

9 閻瑾瑜;;壓電效應(yīng)及其在材料方面的應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2011年01期

10 陶云剛,路小波,周潔敏;利用壓電自敏感致動(dòng)器的撓性結(jié)構(gòu)振動(dòng)主動(dòng)控制實(shí)驗(yàn)研究[J];宇航學(xué)報(bào);1999年01期

相關(guān)博士學(xué)位論文 前1條

1 黃全振;壓電智能結(jié)構(gòu)自適應(yīng)濾波振動(dòng)主動(dòng)控制研究[D];上海大學(xué);2012年



本文編號(hào):2217674

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2217674.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ea4f9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com