基于模糊神經(jīng)網(wǎng)絡(luò)梁結(jié)構(gòu)主動(dòng)振動(dòng)控制算法研究
[Abstract]:As a kind of intelligent material, piezoelectric material has the functions of sensors and actuators. Because of its ability to reduce the structure quality, piezoelectric materials are widely used in structural vibration control. In this paper, fuzzy control, fuzzy neural network (FNN) control and FNN control based on variable learning efficiency are used as control algorithms to study active vibration control of cantilever beams with piezoelectric materials. In this paper, the differential equation of motion of piezoelectric cantilever beam is derived by using Eulerian Bernoulli beam theory, and the time displacement curve of piezoelectric cantilever beam subjected to shock excitation is simulated. Then, the basic theory of fuzzy control and the design method of fuzzy controller are expounded. Fuzzy controller is widely used in various industrial controllers because it does not need the precise mathematical model of the controlled object. However, the fuzzy controller does not have the ability of self-learning and can not adapt to the change of the external environment automatically. Therefore, a fuzzy neural network control algorithm is proposed in this paper. The fuzzy neural network (FNN) combines the advantages of the precise mathematical model of the fuzzy system without the object under control and the neural network with the advantages of self-study, so it has attracted the attention of technicians in intelligent control. However, the convergence speed of fuzzy neural networks is often not ideal, which leads to long training time and is not suitable for real-time automatic control systems. Based on this problem, a fuzzy neural network optimization method based on variable learning rate is proposed. The optimized FNN control system selects the optimal learning rate in each training, so it can improve the convergence speed of neural network under the premise of the maximum error allowed by the system. In this paper, MATLAB is used to test the vibration control effect of the fuzzy system and the optimized FNN control system for piezoelectric cantilever beam. Through simulation, the control effect of each algorithm in vibration suppression can be obtained. At the same time, the simulation shows that the algorithm based on variable learning rate optimization can accelerate the convergence of the network and improve the performance of the control algorithm.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TB535
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅世彬,羅文彩,王振國(guó);基于試驗(yàn)設(shè)計(jì)和響應(yīng)面近似的高超聲速巡航飛行器多學(xué)科設(shè)計(jì)優(yōu)化[J];導(dǎo)彈與航天運(yùn)載技術(shù);2003年06期
2 陳文俊;壓電材料在柔性結(jié)構(gòu)控制中的應(yīng)用——國(guó)外壓電學(xué)研究資料綜述[J];飛航導(dǎo)彈;1999年03期
3 羅世彬,羅文彩,王振國(guó);高超聲速巡航飛行器機(jī)體/推進(jìn)系統(tǒng)一體化設(shè)計(jì)參數(shù)靈敏度分析[J];國(guó)防科技大學(xué)學(xué)報(bào);2003年04期
4 曹青松,周繼惠;MATLAB在神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)中的應(yīng)用[J];華東交通大學(xué)學(xué)報(bào);2004年04期
5 邱志成;智能結(jié)構(gòu)及其在振動(dòng)主動(dòng)控制中的應(yīng)用[J];航天控制;2002年04期
6 王加春,李旦,董申;機(jī)械振動(dòng)主動(dòng)控制技術(shù)的研究現(xiàn)狀和發(fā)展綜述[J];機(jī)械強(qiáng)度;2001年02期
7 林俊,章兢;反向傳播神經(jīng)網(wǎng)絡(luò)收斂性的探討[J];計(jì)算機(jī)與現(xiàn)代化;2005年07期
8 張君英;韓軍輝;;結(jié)構(gòu)振動(dòng)被動(dòng)控制方法概述及應(yīng)用[J];山西建筑;2007年19期
9 閻瑾瑜;;壓電效應(yīng)及其在材料方面的應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2011年01期
10 陶云剛,路小波,周潔敏;利用壓電自敏感致動(dòng)器的撓性結(jié)構(gòu)振動(dòng)主動(dòng)控制實(shí)驗(yàn)研究[J];宇航學(xué)報(bào);1999年01期
相關(guān)博士學(xué)位論文 前1條
1 黃全振;壓電智能結(jié)構(gòu)自適應(yīng)濾波振動(dòng)主動(dòng)控制研究[D];上海大學(xué);2012年
本文編號(hào):2217674
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2217674.html