桁架結(jié)構(gòu)拓?fù)鋬?yōu)化的理論與應(yīng)用研究
[Abstract]:Truss structure has the characteristics of light weight, low cost and simple construction. It has been widely used in engineering. Its fields include construction machinery, bridge design, construction support, building structure, aqueduct, gate support, transmission grid and so on. It is playing an increasingly important role in engineering construction. The main and secondary mirrors of large and medium-sized space optical cameras in foreign countries usually adopt truss structure. The design idea is based on the structural optimization design principle that the bending load is tension and compression load. The truss structure has the advantages of high specific stiffness, light weight and suitable for the layout of long focal length optical system. The traditional method to obtain the optimal truss layout is to use the approximate truss-like results of continuum topology optimization, but it has some shortcomings such as equivalence uncertainty, unknown size parameters and so on. The direct use of truss topology optimization can effectively avoid these problems. The truss topology optimization method is an effective way to apply to practical engineering problems. On this basis, the truss design of the key components of theodolite is carried out, that is, truss structure is used instead of continuum structure to ensure other performance unchanged while minimizing the overall structure weight to provide its quantitative design scheme. The following work: Research on the construction of truss foundation structure with arbitrary shape design area: In view of the complex and irregular shape of Engineering problems, the method of constructing truss foundation structure based on finite element mesh is extended and improved. By combining with graphic collision detection technology and using discrete approximation method, the method of containing arbitrary number of concave shapes is successfully realized. The construction of a hierarchical/full-level connection base structure for a complex design region with a shape is described. Based on the coordinate difference between nodes, the overlapping members can be found quickly and efficiently. In addition, by combining the superposition criterion of component loads, this method is successfully extended to the case of multi-load cases. Large-scale truss plastic design is fast. Research on the method of quick solution: Aiming at the problem of large number of truss full connecting rods and time-consuming calculation, the traditional method of adding rods is improved and perfected. In addition, by combining the principal stress trace method with the reasonable iterative termination conditions, the phenomenon of "pseudo-displacement" in the traditional method of adding bars is solved, which greatly improves the efficiency of plastic design of large-scale trusses. The equivalent semi-definite programming model of truss elastic design with minimum weight as the objective, flexibility as the constraint and maximum stiffness as the objective and volume as the constraint is deduced. The consistency of the two topological optimization results is proved by numerical examples and theoretical derivation. Research on the lightweight scheme of the key components of photoelectric theodolite: The working characteristics of the turntable and the four-way connection of the photoelectric theodolite and their connection with other components are analyzed. A reasonable mesh discrete model and truss base structure are established. The plastic and elastic topology optimization of the truss are carried out. As a supplement, continuum topology optimization is also carried out. The lightweight scheme of truss structure is established by comparing the results of optimization. Then the improved structure is verified by finite element analysis. The results show that the lightweight scheme not only meets the requirements, but also greatly reduces the weight of the structure and achieves the initial design expectations.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊德慶,劉正興,宣兆成;單側(cè)接觸約束下桁架拓?fù)鋬?yōu)化的若干結(jié)果[J];固體力學(xué)學(xué)報(bào);2001年01期
2 周克民,胡云昌;利用變厚度單元進(jìn)行平面連續(xù)體的拓?fù)鋬?yōu)化[J];天津城市建設(shè)學(xué)院學(xué)報(bào);2001年01期
3 周克民,胡云昌;用可退化有限單元進(jìn)行平面連續(xù)體拓?fù)鋬?yōu)化[J];應(yīng)用力學(xué)學(xué)報(bào);2002年01期
4 左孔天,王書亭,張?jiān)魄?陳立平;拓?fù)鋬?yōu)化中兩類不同優(yōu)化數(shù)值算法的研究[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年09期
5 陳茹雯;淺談拓?fù)鋬?yōu)化[J];機(jī)電信息;2004年20期
6 邢素芳,桑建兵;基于MSC.Nastran-optishape拓?fù)鋬?yōu)化的應(yīng)用研究[J];河北工業(yè)大學(xué)學(xué)報(bào);2005年05期
7 葛文杰;黃杰;楊方;;拓?fù)鋬?yōu)化技術(shù)及其在汽車設(shè)計(jì)中的應(yīng)用[J];機(jī)床與液壓;2007年08期
8 杜發(fā)榮;張博;;拓?fù)鋬?yōu)化理論在活塞結(jié)構(gòu)設(shè)計(jì)中的應(yīng)用[J];小型內(nèi)燃機(jī)與摩托車;2007年05期
9 李志鑫;李小清;陳學(xué)東;陳鹿民;;基于頻率約束的連續(xù)體拓?fù)鋬?yōu)化方法的研究[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期
10 劉慶;侯獻(xiàn)軍;;基于HyperMesh/OptiStruct的汽車零部件結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)[J];裝備制造技術(shù);2008年10期
相關(guān)會(huì)議論文 前10條
1 龍凱;肖濤;左正興;;動(dòng)柔順度最小目標(biāo)下的連續(xù)體拓?fù)鋬?yōu)化方法[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
2 曾金玲;;拓?fù)鋬?yōu)化技術(shù)在發(fā)動(dòng)機(jī)零部件設(shè)計(jì)中的應(yīng)用[A];結(jié)構(gòu)及多學(xué)科優(yōu)化工程應(yīng)用與理論研討會(huì)’2009(CSMO-2009)論文集[C];2009年
3 邵沛澤;葉紅玲;陳寧;隋允康;;兩種不同過濾函數(shù)屈曲拓?fù)鋬?yōu)化模型理論推導(dǎo)[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
4 李剛;;結(jié)構(gòu)的多目標(biāo)全局拓?fù)鋬?yōu)化——收斂性與效率準(zhǔn)則[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
5 谷葉水;楊萬(wàn)里;鄧曉龍;;發(fā)動(dòng)機(jī)附件支架多工況拓?fù)鋬?yōu)化研究[A];結(jié)構(gòu)及多學(xué)科優(yōu)化工程應(yīng)用與理論研討會(huì)’2009(CSMO-2009)論文集[C];2009年
6 尚珍;隋允康;鐵軍;葉紅玲;;過濾函數(shù)間關(guān)系對(duì)拓?fù)鋬?yōu)化效率影響的初步研究[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
7 黃永旺;袁登木;;多目標(biāo)拓?fù)鋬?yōu)化技術(shù)在汽車行業(yè)中的應(yīng)用[A];第七屆中國(guó)CAE工程分析技術(shù)年會(huì)暨2011全國(guó)計(jì)算機(jī)輔助工程(CAE)技術(shù)與應(yīng)用高級(jí)研討會(huì)論文集[C];2011年
8 顧亦磊;陳昌亞;;拓?fù)鋬?yōu)化技術(shù)在桁架設(shè)計(jì)中的應(yīng)用[A];結(jié)構(gòu)及多學(xué)科優(yōu)化工程應(yīng)用與理論研討會(huì)’2009(CSMO-2009)論文集[C];2009年
9 朱繼宏;張衛(wèi)紅;;基于單元替換的結(jié)構(gòu)漸進(jìn)拓?fù)鋬?yōu)化方法[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
10 豆麟龍;尹益輝;;考慮材料非線性的拓?fù)鋬?yōu)化研究綜述[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 高文;工業(yè)結(jié)構(gòu)設(shè)計(jì)的新手段[N];計(jì)算機(jī)世界;2008年
相關(guān)博士學(xué)位論文 前10條
1 高興軍;穩(wěn)定性約束下連續(xù)體結(jié)構(gòu)兩尺度拓?fù)鋬?yōu)化[D];華南理工大學(xué);2015年
2 蔡守宇;基于高精度建模分析的形狀/拓?fù)鋬?yōu)化方法[D];西北工業(yè)大學(xué);2015年
3 趙飛;基于無(wú)網(wǎng)格和點(diǎn)密度方法的連續(xù)體與多相材料拓?fù)鋬?yōu)化研究[D];西安電子科技大學(xué);2015年
4 金莫輝;基于偽剛體模型和雅克比矩陣的柔順機(jī)構(gòu)拓?fù)鋬?yōu)化方法[D];華南理工大學(xué);2016年
5 劉虎;結(jié)構(gòu)動(dòng)力學(xué)拓?fù)鋬?yōu)化關(guān)鍵問題研究[D];西北工業(yè)大學(xué);2015年
6 曹靖;含多相雙模量材料的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化算法研究[D];西北農(nóng)林科技大學(xué);2016年
7 高閣;桁架結(jié)構(gòu)拓?fù)鋬?yōu)化的理論與應(yīng)用研究[D];中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2017年
8 胡三寶;多學(xué)科拓?fù)鋬?yōu)化方法研究[D];華中科技大學(xué);2011年
9 陳志敏;基于文化基因算法的拓?fù)鋬?yōu)化方法及其關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2010年
10 王曉明;特定功能結(jié)構(gòu)的拓?fù)鋬?yōu)化[D];大連理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 高瑜;基于非線性分析的拓?fù)鋬?yōu)化設(shè)計(jì)研究[D];西安建筑科技大學(xué);2015年
2 王路;基于可靠性的懸架控制臂拓?fù)鋬?yōu)化[D];北京理工大學(xué);2015年
3 王尚;考慮載荷大小和方向不確定性的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[D];大連理工大學(xué);2015年
4 李鵬;結(jié)構(gòu)元件的隨機(jī)可靠性拓?fù)鋬?yōu)化[D];南京航空航天大學(xué);2014年
5 鄧維敏;微型車車門輕量化設(shè)計(jì)與焊點(diǎn)布局拓?fù)鋬?yōu)化[D];重慶交通大學(xué);2015年
6 劉奇良;EFG法及其拓?fù)鋬?yōu)化的GPU并行計(jì)算研究[D];湘潭大學(xué);2015年
7 相萌;空間反射鏡拓?fù)鋬?yōu)化及其支撐技術(shù)研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2015年
8 孫楷;基于物理規(guī)劃法的柔順機(jī)構(gòu)多目標(biāo)拓?fù)鋬?yōu)化研究[D];中北大學(xué);2016年
9 尹艷山;基于變密度法的連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化[D];東北大學(xué);2014年
10 胡凱;基于并行策略的多材料柔順機(jī)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)與研究[D];華南理工大學(xué);2016年
,本文編號(hào):2198519
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2198519.html