引入上下文信息的可見光遙感圖像目標檢測與識別方法研究
[Abstract]:Target detection and recognition of visible remote sensing image is an important content in remote sensing technology. Because of the influence of many imaging factors, the target features often change significantly, which makes the detection and recognition more difficult. Using context information effectively can improve the efficiency and performance of target detection and recognition. In this paper, the target detection and recognition of visible light remote sensing images with multi-level context information are studied as follows: in the research of target detection in the relative stable scene adjacent to the background, In order to solve the problem of false alarm interference which is similar to the real target, a detection framework based on neighborhood context information is proposed. In this framework, a gradient direction binary pattern descriptor is proposed to represent the neighborhood context information of the target. Because the descriptor does not need to be quantized by codebook learning, it improves the efficiency of feature extraction significantly. The description is embedded into the space pyramid matching model to improve the performance of target detection. In the research of scene change target detection, a detection framework is proposed to introduce target context information. There is a phenomenon that the same kind of context constraints occur between different categories of targets and candidate targets, and different contextual constraints occur between the same category targets and candidate targets. We design target context representation based on vocabulary and combine probabilistic latent semantic analysis model to solve this problem. In the research of target category recognition, aiming at the problem of error in feature extraction, a recognition framework with internal context information is proposed, which firstly extracts sparse salient features of target. Combined with the spatial region information of the target, the feature is expressed, and the classification and recognition are carried out at last. This method enhances the robustness of feature representation and improves the recognition performance. In the research of ground object classification of remote sensing image, a new classification framework is proposed to solve the problem that the spectral characteristics of similar objects vary greatly and the distribution of shape and texture features is complex. In order to obtain good segmentation object, a hierarchical segmentation method based on graph model is proposed to obtain objects and be used for initial classification. Then, a rotation-invariant neighborhood context representation is proposed to optimize the initial classification results. Finally, the Markov random field (Markov Random field MRF model is introduced into the neighborhood object correlation constraints to obtain the final classification results. In this method, the hierarchical progressive strategy is used to introduce different context information step by step, which overcomes the problem of dependence on the initial classification results when the MRF model is used directly.
【學位授予單位】:國防科學技術大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TP751
【相似文獻】
相關期刊論文 前8條
1 楊凱;姜宏旭;;基于失真敏感性的可見光遙感圖像壓縮補償[J];中國空間科學技術;2012年04期
2 劉曉沐;季艷;萬壽紅;;單源可見光遙感圖像中的水域識別[J];儀器儀表學報;2006年S3期
3 趙敏;張榮;尹東;王奎;;一種新的可見光遙感圖像云判別算法[J];遙感技術與應用;2012年01期
4 趙英海;吳秀清;聞凌云;徐守時;;可見光遙感圖像中艦船目標檢測方法[J];光電工程;2008年08期
5 李智勇;董世永;楊效軍;;衛(wèi)星可見光遙感圖像異常原因分析方法初探[J];航天返回與遙感;2009年01期
6 產曉冰;周川杰;呂原;;基于應用的可見光遙感圖像質量評價方法研究[J];無線電工程;2013年11期
7 陳克;尹東;馬婧;張開華;;基于層次反應型agent的可見光遙感圖像陰影提取[J];中國科學技術大學學報;2009年08期
8 ;[J];;年期
相關會議論文 前1條
1 晏磊;童慶禧;;可見光遙感作業(yè)新途徑——以中國貴州無人機超低空遙感試驗為例[A];中國感光學會第七次全國會員代表大會暨學術年會和第七屆青年學術交流會論文摘要集[C];2006年
相關博士學位論文 前3條
1 郭軍;引入上下文信息的可見光遙感圖像目標檢測與識別方法研究[D];國防科學技術大學;2014年
2 陳雁;可見光遙感圖像分割與提取研究[D];中國科學技術大學;2010年
3 廉藺;紅外與可見光遙感圖像自動配準算法研究[D];國防科學技術大學;2013年
相關碩士學位論文 前2條
1 于鵬;高分辨率可見光遙感圖像艦船目標識別方法研究[D];吉林大學;2011年
2 陳榮;西洋水域水深可見光遙感反演研究[D];南京師范大學;2008年
,本文編號:2178991
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2178991.html