多波束成像聲納陣列稀疏化技術(shù)研究
[Abstract]:By sampling a large transducer array at the receiving end, the multi-beam imaging sonar can form a uniform and dense receiving beam through digital beamforming in a certain range of angles, so that the two-dimensional images of underwater targets can be obtained in real time. It is widely used in marine resources development and underwater search and rescue. However, large-scale transducer array brings about the increase of hardware complexity and cost, volume and power consumption of sonar system. Array sparsity is one of the effective ways to solve the above problems. Most of the existing sparse array designs are for single beam cases with few constraints. But the sparse array design of imaging sonar is not well solved. Therefore, it is of great theoretical significance and practical value to study the sparse array technique for multi-beam cases. The main research contents and results are as follows: (1) the array sparsity method based on Farrow structure multi-beam forming is studied in order to obtain a set of sparse weighting coefficient vectors to achieve the sparse location of the array elements. With the Farrow structure pointing adjustable beamformer and the multi-beamforming method based on sub-aperture rotation, 538 beamforming in the range of 90-degree visual field can be realized with only one set of weighting coefficients. A convex optimization model of array sparsity based on Farrow structure is constructed. The simulation and measured data show that the proposed method can obtain satisfactory solutions according to the threshold set. But the sparse rate of the array is not high. (2) A multi-beam array sparse algorithm based on intelligent optimization and convex optimization is studied. The sparse method of single beam array based on particle swarm optimization is extended to multi-beam array. The simulation results show that the algorithm has poor optimization ability and too much computation. A hybrid algorithm based on improved binary wind-driven optimization and convex optimization is proposed. The position and weighted vector of the array are optimized until the sparse array with minimum number of elements satisfying the performance of the pattern is obtained. The simulated and measured data show that the algorithm can obtain the optimal array weight and array layout to meet the performance requirements. Both optimization performance and computational efficiency have been greatly improved compared with the existing methods. (3) Multi-beam array sparse method based on column space correlation is studied. Considering that the received signals of array elements have great correlation, the column space correlation model of the receiving array guidance matrix is studied, and the projection error is introduced. Based on the projection errors of each column in the subspace of other Zhang Cheng columns, the relative redundancy of the array elements is determined, and a detailed algorithm flow is designed. Compared with the previous two methods, the sparse method based on column space can improve the performance and achieve the optimal array sparsity ratio at the same performance of the main sidelobe. In summary, the three sparse methods presented in this paper have their own advantages and disadvantages. The method of array sparsity based on Farrow structure requires less weighting coefficient and less computation, but the width of the main lobe of the beam is wider and the sparse rate of the array is not high. The performance of the latter two multi-beam array sparse methods is better than that of the multi-beam forming method based on Farrow structure, but the computation time is increased. By comparison, the multi-beam array sparse method based on column space correlation is optimal.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB565.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任作琳;田雨波;孫菲艷;;具有強開發(fā)能力的風(fēng)驅(qū)動優(yōu)化算法[J];計算機科學(xué);2016年01期
2 王慶喜;郭曉波;;基于萊維飛行的粒子群優(yōu)化算法[J];計算機應(yīng)用研究;2016年09期
3 楊曉超;劉宏偉;王勇;糾博;;最小化旁瓣的MIMO雷達(dá)發(fā)射方向圖優(yōu)化算法[J];電子與信息學(xué)報;2012年12期
4 辛淵博;侯宏;陳志菲;陳濤;;遺傳算法用于波達(dá)方向估計的圓陣稀疏優(yōu)化[J];計算機仿真;2011年03期
5 陳莉;賈育秦;畢有明;陳宏軍;;基于BP神經(jīng)網(wǎng)絡(luò)數(shù)控機床熱誤差建模的研究[J];機電工程技術(shù);2011年01期
6 趙鋼;王冬梅;黃俊友;吳杰;;多波束與單波束測深技術(shù)在水下工程中的應(yīng)用比較研究[J];長江科學(xué)院院報;2010年02期
7 李頌文;;聲透鏡波束形成技術(shù)[J];聲學(xué)技術(shù);2007年05期
8 彭祥龍;;用遺傳算法優(yōu)化任意稀布率的平面陣列[J];電訊技術(shù);2007年03期
9 朱維慶;劉曉東;張東升;張方生;秦高林;廖諍;方常樂;;高分辨率測深側(cè)掃聲納[J];海洋技術(shù);2005年04期
10 孫大軍,田坦;合成孔徑聲吶技術(shù)研究(綜述)[J];哈爾濱工程大學(xué)學(xué)報;2000年01期
相關(guān)博士學(xué)位論文 前4條
1 韓業(yè)強;實時相控陣三維成像聲納的波束形成及陣列稀疏技術(shù)研究[D];浙江大學(xué);2013年
2 陽凱;陣列方向圖綜合與自適應(yīng)波束形成技術(shù)研究[D];電子科技大學(xué);2013年
3 吳菊;聲透鏡成像關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2013年
4 彭建輝;基于凸優(yōu)化理論的自適應(yīng)波束形成技術(shù)[D];中國科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前9條
1 董tt;基于實測數(shù)據(jù)的多波束成像聲納系統(tǒng)優(yōu)化與實現(xiàn)[D];南京航空航天大學(xué);2014年
2 王雪磊;基于稀疏特征的高分辨聲吶成像[D];西安電子科技大學(xué);2014年
3 楊成;多波束成像聲納系統(tǒng)硬件平臺設(shè)計與實現(xiàn)[D];南京航空航天大學(xué);2013年
4 王靜嬌;成像聲納數(shù)據(jù)實時傳輸與顯示控制技術(shù)研究[D];南京航空航天大學(xué);2013年
5 楊斌;一種改進的粒子群算法在陣列天線設(shè)計中的應(yīng)用[D];清華大學(xué);2011年
6 趙帥;單波束掃描成像聲吶的數(shù)據(jù)處理及其DSP實現(xiàn)[D];中國海洋大學(xué);2010年
7 張凱;基于子空間分析的高光譜圖像目標(biāo)檢測技術(shù)研究[D];杭州電子科技大學(xué);2010年
8 陳浩;陣列信號處理相關(guān)技術(shù)研究[D];南京理工大學(xué);2008年
9 袁連喜;水下智能機器人聲視覺成像可視化技術(shù)研究[D];哈爾濱工程大學(xué);2002年
,本文編號:2140029
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2140029.html