仿生陷光功能表面設(shè)計制造及性能研究
發(fā)布時間:2018-07-09 19:07
本文選題:仿生學(xué) + 蝴蝶; 參考:《吉林大學(xué)》2014年博士論文
【摘要】:在太陽能電池領(lǐng)域中,光學(xué)損失是影響其效率提高的最重要障礙之一。目前,用于減少太陽能電池表面光學(xué)損失的主要途徑有兩條:一是利用減反射薄膜,二是利用陷光結(jié)構(gòu)。同時,作為地球上陽光輻射中必不可少的部分,紫外光(200-400nm)對于地球上的生命來說至關(guān)重要,是必要的,但是,過多的紫外輻射卻對人體會造成致命的傷害。因此,對于紫外波段陷光表面的研究同樣具有重要的意義,尤其是對于空間裝備以及空間探索領(lǐng)域。陷光結(jié)構(gòu)是通過制作一些表面結(jié)構(gòu)來降低表面的反射率,它通過反射、折射和散射作用,將入射光分散到各個角度,從而增加光在太陽能電池等裝置中的光程,使光被吸收的效率顯著增加。目前,已經(jīng)研制出的陷光表面有很多種,例如,蜂窩狀表面、正弦光柵織構(gòu)化表面、酒窩狀有序表面、周期性金字塔及倒金字塔結(jié)構(gòu)表面、二元光柵表面等,這些陷光表面在眾多領(lǐng)域的光學(xué)裝置上均得到了很好的應(yīng)用。然而,這些光學(xué)結(jié)構(gòu)的實際陷光性能或者陷光效率并沒有達(dá)到理想的狀態(tài)。因此,尋求最優(yōu)化的高效陷光功能表面成為光伏領(lǐng)域研究的熱點和難點。 受仿生學(xué)的啟發(fā),本文選取生活在高海拔或高緯度地區(qū)等低溫、強紫外環(huán)境下的蝴蝶作為生物樣本,它們分別是翠葉鳳蝶、翡翠鳳蝶及三種絹蝶。通過紫外可見分光光度計對典型蝴蝶鱗片進(jìn)行反射光譜測量,發(fā)現(xiàn)了翠葉鳳蝶和翡翠鳳蝶翅膀鱗片在可見光波段均具有優(yōu)異的陷光特性,五種絹蝶均具有優(yōu)異的紫外陷光特性。采用體視顯微鏡、掃描電子顯微鏡及透射電子顯微鏡等對典型蝴蝶鱗片陷光結(jié)構(gòu)進(jìn)行分析,獲得了典型蝴蝶鱗片陷光結(jié)構(gòu)參數(shù),建立了仿生陷光結(jié)構(gòu)光學(xué)模型,,揭示了典型蝴蝶鱗片優(yōu)異陷光特性機理。對于翠葉鳳蝶,其翅膀表面具有兩層結(jié)構(gòu)完全不同的鱗片,A型塔狀結(jié)構(gòu)對入射光具有相消干涉作用,B型多孔光柵結(jié)構(gòu)對入射光具有衍射作用,兩者共同作用實現(xiàn)優(yōu)異的陷光特性。翡翠鳳蝶多層介質(zhì)膜一維光子晶體同樣實現(xiàn)了優(yōu)異的陷光特性。絹蝶通過在一維光子晶體層中剪切并生成了光柵結(jié)構(gòu),同時利用光柵光束定向特性以及光子晶體光波選擇特性達(dá)到優(yōu)異紫外陷光特性。此外,由于蝴蝶翅膀三維超微結(jié)構(gòu)與角質(zhì)層復(fù)雜折射系數(shù)的完美組合超出了目前現(xiàn)有微納制造技術(shù)能力的范圍,對于其分級結(jié)構(gòu)整體的復(fù)制并不完整,對微納陷光表面的制造面臨挑戰(zhàn),本文直接利用蝴蝶翅膀為生物模板,分別采用溶膠-凝膠以及生物模板法對典型蝴蝶陷光功能表面進(jìn)行結(jié)構(gòu)和功能的仿生設(shè)計與制造。獲得了一種對蝴蝶鱗片結(jié)構(gòu)可調(diào)的仿生陷光復(fù)合材料樣品,在溶脹的過程中光譜的反射率逐漸增加,陷光特性減弱,實現(xiàn)了對其陷光性能的調(diào)節(jié)和控制。通過對比模板與制造樣品表面微結(jié)構(gòu)的形狀、分布和尺寸參數(shù),證明了仿生制造樣本繼承了生物樣本陷光表面的倒置結(jié)構(gòu),為進(jìn)一步地精確研究蝴蝶翅膀表面結(jié)構(gòu)和光學(xué)相互耦合效應(yīng)提供必要的樣品支持,進(jìn)而可以設(shè)計出高性能的光學(xué)器件。 全文共分七章。第一章為緒論,詳細(xì)闡述了目前陷光結(jié)構(gòu)研究的重大需求,生物功能特性與其表面結(jié)構(gòu)之間的緊密關(guān)系以及目前仿生研究的最新進(jìn)展,介紹了目前對于仿生功能表面微納制造的最新進(jìn)展以及面臨的重大挑戰(zhàn)。第二章是對蝴蝶鱗片陷光功能表面及其光學(xué)性能測試,篩選出具有優(yōu)異陷光特性的蝴蝶物種并對其光學(xué)性能進(jìn)行詳細(xì)的研究,獲得蝴蝶鱗片三維結(jié)構(gòu)參數(shù)。第三章是蝴蝶鱗片陷光功能特性的計算與模擬,利用前面對典型蝴蝶翅膀鱗片陷光表面微結(jié)構(gòu)分析得到的試驗數(shù)據(jù),建立了陷光結(jié)構(gòu)的光學(xué)模型,從生物獨特功能特性與其表面結(jié)構(gòu)的關(guān)系角度出發(fā),利用光子晶體及衍射光柵理論對這些光學(xué)模型進(jìn)行計算與模擬,通過分析陷光結(jié)構(gòu)的光學(xué)模型,再現(xiàn)蝴蝶翅膀超微結(jié)構(gòu)與光波的相互作用規(guī)律,獲得了這些光學(xué)模型的模擬結(jié)果,通過模擬與計算結(jié)果的對比分析確定其優(yōu)異陷光特性及其形成機理。第四章是陷光功能表面溶膠-凝膠法制造,利用溶膠-凝膠工藝制造了陷光功能表面復(fù)合材料樣品,通過施加外部刺激實現(xiàn)對陷光表面結(jié)構(gòu)及功能的可調(diào)。第五章是仿生陷光功能表面生物模板法制造,以正硅酸乙酯為前驅(qū)體,以具有陷光功能特性的蝴蝶翅膀為模板,通過溶膠-凝膠以及選擇性腐蝕工藝對蝴蝶翅膀陷光功能表面進(jìn)行仿生設(shè)計及制造,最終獲得了陷光表面結(jié)構(gòu)的倒置結(jié)構(gòu)制造樣品。第六章是仿生陷光功能表面制造樣品性能研究,對溶膠-凝膠及生物模板法制造獲取的樣品,進(jìn)行微結(jié)構(gòu)及光學(xué)性能的詳細(xì)對比分析,通過對生物樣本及制造樣本之間的多角度多手段的對比分析,確定了仿生制造樣本對生物樣本結(jié)構(gòu)和功能的高精度繼承。第八章為結(jié)論。 本文對于仿生陷光功能表面的研究,將為新型高效陷光結(jié)構(gòu)的研究提供新的思路,如果將這種仿生陷光功能表面應(yīng)用于光能利用的陷光設(shè)計,有望降低光能利用過程中的光學(xué)損失,在提高太陽能電池中的光能利用效率方面具有重要的工程應(yīng)用價值。
[Abstract]:In the field of solar cells, optical loss is one of the most important obstacles to improve the efficiency of the solar cell. At present, there are two main ways to reduce the optical loss of the solar cell surface: one is to use the antireflection film, and the two is to use the trapping structure. At the same time, the ultraviolet light (200-400nm) is an essential part of the sun radiation on the earth. It is essential to life on the earth, but it is necessary, but too much ultraviolet radiation can cause fatal damage to the human body. Therefore, it is of great significance to study the trapped surface of the ultraviolet band, especially for space equipment and space exploration. The structure of the trap is made by making some surface structures. The reflectivity of low surface, which spreads the incident light into various angles by reflection, refraction and scattering, increases the light path of light in a solar cell and so on, and increases the efficiency of the absorption of light significantly. At present, there are many kinds of trapped surface, such as the honeycomb surface, the sinusoidal grating textured surface, the dimple shape. The order surface, the periodic Pyramid and the inverted Pyramid structure surface, the two element grating surface, etc., these optical surfaces have been well applied in the optical devices of many fields. However, the actual trapping performance or the light trapping efficiency of these optical structures has not reached the ideal state. Therefore, the optimization of the efficient trapping function table is sought. Surface has become a hot and difficult point in the field of photovoltaic research.
Inspired by bionics, this paper selects butterflies as biological samples in high and high latitudes and high latitudes. They are butterflies, jadeite butterflies and three kinds of sphenoid butterflies, respectively. The typical butterfly scales are measured by the ultraviolet spectrophotometer, and the butterflies and jadeite butterflies are found. The wing scales have excellent trapping characteristics in the visible light band, and the five kinds of spice have excellent UV trapping characteristics. Stereoscopic microscope, scanning electron microscope and transmission electron microscope are used to analyze the trapping structure of Typical Butterfly Scales, and the structure parameters of Typical Butterfly Scales are obtained, and the bionic trapping structure is established. The optical model reveals the excellent mechanism of the excellent trapping characteristics of the typical butterfly scales. For the butterflies, the wing surface has two layers of completely different scales. The A type tower structure has an interference effect on the incident light, and the structure of the B type porous grating has diffraction effect on the incident light. The one dimensional photonic crystal of the multi layer dielectric film of butterflies also achieves excellent light notch characteristics. The spun sphenoid is cut through the one-dimensional photonic crystal layer and produces a grating structure. At the same time, the excellent ultraviolet trapping characteristics are achieved by the directional characteristic of the grating beam and the optical wave selection characteristic of the photonic crystal. The perfect combination of the complex refractive index of the mass layer is beyond the current scope of the existing micro nano manufacturing technology. The duplication of its hierarchical structure is not complete, and the fabrication of the micro nanofagup surface is facing a challenge. This paper uses butterfly wings as a biological template directly, and uses the solution gel and the biological template method to trap the typical butterfly. A bionic design and manufacture of the structure and function of the functional surface. A sample of the bionic trapping composite material which is adjustable to the structure of the butterfly is obtained. In the process of swelling, the reflectance of the spectrum is increased gradually and the property of the trap is weakened. The surface microstructure of the sample is adjusted and controlled. The surface microstructure of the sample is compared with the surface of the sample. The shape, distribution and size parameters show that the biomimetic manufacturing samples inherit the inverted structure of the surface of the biological sample, providing the necessary sample support for further research on the surface structure and optical coupling effect of the butterfly wings, and then the high performance optical devices can be designed.
The full text is divided into seven chapters. The first chapter is the introduction, which describes the major needs, the close relationship between the biological function and its surface structure, and the latest progress in the current bionic research. The new progress and the major challenges facing the biomimetic surface micro nano manufacturing are introduced. The second chapter is the two chapters. The butterfly scales and their optical properties were tested, the butterfly species with excellent trapping characteristics were screened and their optical properties were studied in detail, and the three-dimensional structure parameters of the butterfly scales were obtained. The third chapter was the calculation and Simulation of the trap function of butterfly scales. The optical model of the trapping structure is established by the structural analysis. From the angle of the relationship between the unique functional characteristics of the organism and its surface structure, the optical models are calculated and simulated by the theory of photonic crystal and diffraction grating. The optical model of the trap structure is analyzed, and the ultrastructure and light wave of the butterfly wing are reproduced. The simulation results of these optical models are obtained. The excellent trapping characteristics and their formation mechanism are determined by the comparison of the simulation and calculation results. The fourth chapter is made by the sol-gel method of the surface subsidence and the sol-gel process has been used to make the composite materials of the sunk energy surface, by applying external spines. The structure and function of the trapped light surface can be adjusted. The fifth chapter is made by bionic trapping function surface biomimetic template method, using tetraethyl orthosilicate as precursor and butterfly wing with the characteristic of trap function as template, through the sol-gel and selective etching process, the bionic design and manufacture of the light functional surface of butterfly wing are made by the sol-gel and selective etching process. The sixth chapter is the study of the performance of the sample made by the bionic trapping surface. The samples obtained by the sol-gel and the biological template method are made, and the microstructure and optical properties are analyzed in detail. The multi angle and multi means between the biometric and the manufacturing samples are made. Compared with the analysis, the high precision inheritance of bionic samples to the structure and function of biological samples is determined. The eighth chapter is the conclusion.
In this paper, the study of bionic trapping surface will provide new ideas for the study of new high efficiency trapping structure. If this kind of bionic trapping surface is applied to the design of light energy utilization, it is expected to reduce optical loss in the process of light energy utilization, and it is important to improve the efficiency of light energy utilization in solar cells. Engineering application value.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TB17;TB306
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 任露泉;;地面機械脫附減阻仿生研究進(jìn)展[J];中國科學(xué)(E輯:技術(shù)科學(xué));2008年09期
2 任露泉,陳德興,胡建國;土壤動物減粘脫土規(guī)律初步分析[J];農(nóng)業(yè)工程學(xué)報;1990年01期
3 陳秉聰,任露泉,徐曉波,崔相旭,王煜明,張伯蘭,葛遼海,金桂萍;土壤粘附仿生研究(二) 典型土壤動物體表形態(tài)減粘脫土的初步研究[J];農(nóng)業(yè)工程學(xué)報;1990年02期
4 任露泉,叢茜,佟金;界面粘附中非光滑表面基本特性的研究[J];農(nóng)業(yè)工程學(xué)報;1992年01期
5 任露泉,叢茜,陳秉聰,吳連奎,李安琪,景德璋;幾何非光滑典型生物體表防粘特性的研究[J];農(nóng)業(yè)機械學(xué)報;1992年02期
本文編號:2110369
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2110369.html
最近更新
教材專著