聯(lián)合監(jiān)控均值和方差的CUSUM控制圖優(yōu)化設計
發(fā)布時間:2018-07-08 10:06
本文選題:統(tǒng)計過程控制 + 累積和控制圖 ; 參考:《上海交通大學》2014年碩士論文
【摘要】:為了降低質量損失和次品廢品的出現,目前制造業(yè)的發(fā)展需求更高精度的質量檢測,當生產過程出現問題時能夠快速發(fā)現并加以改進。質量偏移分為兩種形式,一種為質量特性值的均值偏移問題,代表生產過程遠離目標值;另一種為方差偏移,代表生產過程幅度過大。然而在現代生產過程中,我們要求生產過程既要接近目標值,又不能有太大的波動幅度,因此在大部分情況下都需要同時監(jiān)控生產過程中的均值和方差。 傳統(tǒng)的休哈特控制圖在檢測微小偏移上效果并不明顯,本文將檢測力度更優(yōu)的累積和控制圖引入聯(lián)合監(jiān)控均值和方差偏移的控制圖方法中,利用馬爾可夫鏈方法來求得新控制圖的平均鏈長,對比文獻中各種控制圖的平均鏈長數據以及更換變量數值改進控制圖。結果證明新的控制圖無論在檢測均值或方差的偏移中都有良好的改進效果,,尤其是在小偏移方面有很大的提升。文章在新的模型上繼續(xù)改進,引入變動抽樣間隔的方法,通過長短抽樣間隔設置,使得檢測微小偏移的力度進一步提高。接著本文考慮到在SPC的監(jiān)控過程中,有時候很難預測過程的偏移的大小和規(guī)格,這使得我們在設定監(jiān)控參數的時候不能根據固定偏移量來優(yōu)化結果。本文將休哈特和累積和控制圖整合模型應用于聯(lián)合監(jiān)控均值和方差偏移的研究中,整合模型在大偏移監(jiān)控中更加敏感,增大了控制圖的應用范圍。本文的建模和改進研究結果可以大大提高生產監(jiān)控能力,降低質量損失。文章最后對研究的不足和未來的發(fā)展做了總結。
[Abstract]:In order to reduce the quality loss and the appearance of defective products, the development of manufacturing industry requires higher precision quality detection, which can be quickly detected and improved when problems occur in the production process. Mass migration can be divided into two forms, one is the mean deviation of the quality characteristic value, which represents the production process away from the target value, and the other is the variance deviation, which represents the excessive amplitude of the production process. However, in the modern production process, we require that the production process should be close to the target value without too much fluctuation, so in most cases, it is necessary to monitor the mean value and variance in the production process at the same time. The traditional Shewhart control chart is not effective in detecting small migration. In this paper, the cumulative and control chart, which is better for detecting, is introduced into the control chart method of joint monitoring of mean and variance shifts. The average chain length of the new control chart is obtained by using the Markov chain method. The average chain length data of various control charts in the literature and the numerical improvement control charts of changing variables are compared. The results show that the new control chart has a good improvement in the detection of mean and variance migration, especially in the small migration. In this paper, the new model is further improved, and the method of variable sampling interval is introduced. Through the setting of long and long sampling interval, the detection of small offset is further improved. Then this paper considers that it is very difficult to predict the deviation size and specification of SPC in the process of SPC monitoring which makes it impossible for us to optimize the results according to the fixed offset when we set the monitoring parameters. In this paper, Shewhart and cumulative sum control chart integration model are applied to the study of joint monitoring mean and variance migration. The integration model is more sensitive to large migration monitoring and increases the application scope of control chart. The modeling and improving results of this paper can greatly improve the production monitoring ability and reduce the quality loss. At the end of the article, the deficiency of the research and the development of the future are summarized.
【學位授予單位】:上海交通大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F273.2;TB114.2
【參考文獻】
相關期刊論文 前5條
1 杜福洲;唐曉青;孫靜;;MEWMA控制圖ARL計算及參數優(yōu)化[J];北京航空航天大學學報;2006年08期
2 王兆軍;鞏震;鄒長亮;;ARL計算方法綜述[J];數理統(tǒng)計與管理;2011年03期
3 郭志芳;程龍生;;帶有(2,3)轉換規(guī)則的VSSI
本文編號:2107076
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2107076.html